Home Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology
Article
Licensed
Unlicensed Requires Authentication

Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology

  • O.Y. Zatsepina , D. Riestenberg , S.D. McCallum , M. Gborigi , C. Brandt , B.A. Buffett and T.J. Phelps EMAIL logo
Published/Copyright: March 28, 2015
Become an author with De Gruyter Brill

Abstract

The onset of gas hydrate nucleation is greatly affected by the thermal history of the water that forms its lattice structure. Hydrate formation experiments were performed in a 72 L pressure vessel by injecting bubbles of carbon dioxide through a 1 L tube at hydrate formation pressures (1.4 to 3.7 MPa) and temperatures (2 to 5 °C). The results revealed that when even a small fraction (e.g., 5-35%) of the water in which the hydrate formed was recently thawed the overpressure for nucleation was reduced by an average of 50% as compared to untreated distilled water. This observation was confirmed by an analysis of variance (ANOVA) test that indicated that recently thawed water required a significantly lower overpressure compared to the untreated distilled water. In experiments where hydrate nucleated at low overpressure (e.g., 0.75 MPa), hydrate formed at the vapor-liquid interface, encrusting the bubbles with less than 1 g of hydrate accumulation in the first minute. When a higher overpressure was required for nucleation (e.g., 1.3 MPa), hydrate was observed to form abruptly not only on bubbles but also from the bulk liquid phase, typically accumulating a mass of more than 100 g in the first few seconds. Our results show that initiation of hydrate formation is strongly influenced by temperature-dependent pre-structuring of water molecules prior to their contact with gas. Although as little as a 5% volume fraction of pre-structured water may decrease the required overpressure, once hydrate formation commences the mass of hydrate accumulation is dependent on the overpressure.

Received: 2003-10-17
Accepted: 2004-4-8
Published Online: 2015-3-28
Published in Print: 2004-8-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Introductory overview: Hydrate knowledge development
  2. Scanning Electron Microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice, and comparison to natural hydrates
  3. Dynamics of trimethylene oxide in a structure II clathrate hydrate
  4. The stability of methane hydrates in highly concentrated electrolyte solutions by differential scanning calorimetry and theoretical computation
  5. The effect of elevated methane pressure on methane hydrate dissociation
  6. Methane hydrate formation in partially water-saturated Ottawa sand
  7. Methanol—inhibitor or promoter of the formation of gas hydrates from deuterated ice?
  8. Investigating the performance of clathrate hydrate inhibitors using in situ Raman spectroscopy and differential scanning calorimetry
  9. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate
  10. Experimental studies on the formation of porous gas hydrates
  11. Investigation of jet breakup and droplet size distribution of liquid CO2and water systems—implications for CO2hydrate formation for ocean carbon sequestration
  12. Measurement of clathrate hydrate precipitation from CO2solution by a nondestructive method
  13. Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology
  14. Growth-controlling processes of CO2gas hydrates
  15. Thermodynamic prediction of clathrate hydrate dissociation conditions in mesoporous media
  16. Modeling dynamic marine gas hydrate systems
  17. Late-stage, high-temperature processesing in the Allende meteorite: Record from Ca,Fe-rich silicate rims around dark inclusions
  18. Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma
  19. Nondestructive three-dimensional element-concentration mapping of a Cs-doped partially molten granite by X-ray computed tomography using synchrotron radiation
  20. A theoretical study of structural factors correlated with 23Na NMR parameters
  21. Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high-pressure rock from the Bohemian Massif
  22. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China
  23. Letter. Novel high-pressure behavior in chlorite: A synchrotron XRD study of clinochlore to 27 GPa
  24. Letter. Periodic precipitation pattern formation in hydrothermally treated metamict zircon
  25. A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2004-8-913/html
Scroll to top button