Abstract
Methane hydrate, equilibrated at P, T conditions within the hydrate stability field, was rapidly depressurized to 1.0 or 2.0 MPa and maintained at isobaric conditions outside its stability field, while the extent and rate of hydrate dissociation was measured at fixed, externally maintained temperatures between 250 and 288 K. The dissociation rate decreases with increasing pressure at a given temperature. Dissociation rates at 1.0 MPa parallel the complex, reproducible T-dependence previously observed between 250 and 272 K at 0.1 MPa. The lowest rates were observed near 268 K, such that >50% of the sample can persist for more than two weeks at 0.1 MPa to more than a month at 1 and 2 MPa. Varying the pressure stepwise in a single experiment increased or decreased the dissociation rate in proportion to the rates observed in the isobaric experiments, similar to the rate reversibility previously observed with stepwise changes in temperature at 0.1 MPa.
At fixed P, T conditions, the rate of methane hydrate dissociation decreases monotonically with time, never achieving a steady rate. The relationship between time (t) and the extent of hydrate dissociation is empirically described by:
Evolved gas (%) = A·tB (1)
where the pre-exponential term A ranges from 0 to 16% s-B and the exponent B is generally <1. Based on fits of the dissociation results to Equation 1 for the full range of temperatures (204 to 289 K) and pressures (0.1 to 2.0 MPa) investigated, the derived parameters can be used to predict the methane evolution curves for pure, porous methane hydrate to within ± 5%. The effects of sample porosity and the presence of quartz sand and seawater on methane hydrate dissociation are also described using Equation 1.
© 2015 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- Introductory overview: Hydrate knowledge development
- Scanning Electron Microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice, and comparison to natural hydrates
- Dynamics of trimethylene oxide in a structure II clathrate hydrate
- The stability of methane hydrates in highly concentrated electrolyte solutions by differential scanning calorimetry and theoretical computation
- The effect of elevated methane pressure on methane hydrate dissociation
- Methane hydrate formation in partially water-saturated Ottawa sand
- Methanol—inhibitor or promoter of the formation of gas hydrates from deuterated ice?
- Investigating the performance of clathrate hydrate inhibitors using in situ Raman spectroscopy and differential scanning calorimetry
- Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate
- Experimental studies on the formation of porous gas hydrates
- Investigation of jet breakup and droplet size distribution of liquid CO2and water systems—implications for CO2hydrate formation for ocean carbon sequestration
- Measurement of clathrate hydrate precipitation from CO2solution by a nondestructive method
- Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology
- Growth-controlling processes of CO2gas hydrates
- Thermodynamic prediction of clathrate hydrate dissociation conditions in mesoporous media
- Modeling dynamic marine gas hydrate systems
- Late-stage, high-temperature processesing in the Allende meteorite: Record from Ca,Fe-rich silicate rims around dark inclusions
- Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma
- Nondestructive three-dimensional element-concentration mapping of a Cs-doped partially molten granite by X-ray computed tomography using synchrotron radiation
- A theoretical study of structural factors correlated with 23Na NMR parameters
- Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high-pressure rock from the Bohemian Massif
- Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China
- Letter. Novel high-pressure behavior in chlorite: A synchrotron XRD study of clinochlore to 27 GPa
- Letter. Periodic precipitation pattern formation in hydrothermally treated metamict zircon
- A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3
Artikel in diesem Heft
- Introductory overview: Hydrate knowledge development
- Scanning Electron Microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice, and comparison to natural hydrates
- Dynamics of trimethylene oxide in a structure II clathrate hydrate
- The stability of methane hydrates in highly concentrated electrolyte solutions by differential scanning calorimetry and theoretical computation
- The effect of elevated methane pressure on methane hydrate dissociation
- Methane hydrate formation in partially water-saturated Ottawa sand
- Methanol—inhibitor or promoter of the formation of gas hydrates from deuterated ice?
- Investigating the performance of clathrate hydrate inhibitors using in situ Raman spectroscopy and differential scanning calorimetry
- Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate
- Experimental studies on the formation of porous gas hydrates
- Investigation of jet breakup and droplet size distribution of liquid CO2and water systems—implications for CO2hydrate formation for ocean carbon sequestration
- Measurement of clathrate hydrate precipitation from CO2solution by a nondestructive method
- Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology
- Growth-controlling processes of CO2gas hydrates
- Thermodynamic prediction of clathrate hydrate dissociation conditions in mesoporous media
- Modeling dynamic marine gas hydrate systems
- Late-stage, high-temperature processesing in the Allende meteorite: Record from Ca,Fe-rich silicate rims around dark inclusions
- Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma
- Nondestructive three-dimensional element-concentration mapping of a Cs-doped partially molten granite by X-ray computed tomography using synchrotron radiation
- A theoretical study of structural factors correlated with 23Na NMR parameters
- Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high-pressure rock from the Bohemian Massif
- Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China
- Letter. Novel high-pressure behavior in chlorite: A synchrotron XRD study of clinochlore to 27 GPa
- Letter. Periodic precipitation pattern formation in hydrothermally treated metamict zircon
- A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3