Home Physical Sciences Letter. Novel high-pressure behavior in chlorite: A synchrotron XRD study of clinochlore to 27 GPa
Article
Licensed
Unlicensed Requires Authentication

Letter. Novel high-pressure behavior in chlorite: A synchrotron XRD study of clinochlore to 27 GPa

  • Mark D. Welch EMAIL logo , Annette K. Kleppe and Andrew P. Jephcoat
Published/Copyright: March 28, 2015
Become an author with De Gruyter Brill

Abstract

The high-pressure behavior of synthetic end-member IIb clinochlore, Mg5Al(Si3Al)O10(OH)8, has been studied by synchrotron X-ray powder diffraction to 27 GPa at 300 K. A non-quenchable, reversible transformation occurs between 9 and 10 GPa that is dominated by compression normal to the structural layering and has an associated small but significant shear of the β angle from 97.2 to 96.3°. The high-pressure chlorite is more compressible than the low-pressure phase. Diffraction patterns of the high-pressure chlorite are very similar from 10 to 27 GPa, indicating that it persists stably with no significant change in β to very high pressures: β is effectively locked at the transformation to the high-pressure structure. It is proposed that the transformation is not polytypic and that the distortion reflects reorganization of the interlayer hydrogen bonding, possibly involving novel proton behavior as adjacent sheets of cations of the brucite-like and tetrahedral layers close down on the sheet of interlayer protons. The transformation is likely driven by O atom close-packing requirements imposed by pressure.

Received: 2003-11-11
Accepted: 2004-3-6
Published Online: 2015-3-28
Published in Print: 2004-8-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Introductory overview: Hydrate knowledge development
  2. Scanning Electron Microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice, and comparison to natural hydrates
  3. Dynamics of trimethylene oxide in a structure II clathrate hydrate
  4. The stability of methane hydrates in highly concentrated electrolyte solutions by differential scanning calorimetry and theoretical computation
  5. The effect of elevated methane pressure on methane hydrate dissociation
  6. Methane hydrate formation in partially water-saturated Ottawa sand
  7. Methanol—inhibitor or promoter of the formation of gas hydrates from deuterated ice?
  8. Investigating the performance of clathrate hydrate inhibitors using in situ Raman spectroscopy and differential scanning calorimetry
  9. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate
  10. Experimental studies on the formation of porous gas hydrates
  11. Investigation of jet breakup and droplet size distribution of liquid CO2and water systems—implications for CO2hydrate formation for ocean carbon sequestration
  12. Measurement of clathrate hydrate precipitation from CO2solution by a nondestructive method
  13. Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology
  14. Growth-controlling processes of CO2gas hydrates
  15. Thermodynamic prediction of clathrate hydrate dissociation conditions in mesoporous media
  16. Modeling dynamic marine gas hydrate systems
  17. Late-stage, high-temperature processesing in the Allende meteorite: Record from Ca,Fe-rich silicate rims around dark inclusions
  18. Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma
  19. Nondestructive three-dimensional element-concentration mapping of a Cs-doped partially molten granite by X-ray computed tomography using synchrotron radiation
  20. A theoretical study of structural factors correlated with 23Na NMR parameters
  21. Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high-pressure rock from the Bohemian Massif
  22. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China
  23. Letter. Novel high-pressure behavior in chlorite: A synchrotron XRD study of clinochlore to 27 GPa
  24. Letter. Periodic precipitation pattern formation in hydrothermally treated metamict zircon
  25. A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3
Downloaded on 6.2.2026 from https://www.degruyterbrill.com/document/doi/10.2138/am-2004-8-923/html
Scroll to top button