Abstract
This paper presents results of shear strength and acoustic velocity (p-wave) measurements performed on: (1) samples containing natural gas hydrate from the Mallik 2L-38 well, Mackenzie Delta, Northwest Territories; (2) reconstituted Ottawa sand samples containing methane gas hydrate formed in the laboratory; and (3) ice-bearing sands. These measurements show that hydrate increases shear strength and p-wave velocity in natural and reconstituted samples. The proportion of this increase depends on (1) the amount and distribution of hydrate present, (2) differences in sediment properties, and (3) differences in test conditions. Stress-strain curves from the Mallik samples suggest that natural gas hydrate does not cement sediment grains. However, stress-strain curves from the Ottawa sand (containing laboratory-formed gas hydrate) do imply cementation is present. Acoustically, rock physics modeling shows that gas hydrate does not cement grains of natural Mackenzie Delta sediment. Natural gas hydrates are best modeled as part of the sediment frame. This finding is in contrast with direct observations and results of Ottawa sand containing laboratory-formed hydrate, which was found to cement grains (Waite et al. 2004). It therefore appears that the microscopic distribution of gas hydrates in sediment, and hence the effect of gas hydrate on sediment physical properties, differs between natural deposits and laboratory-formed samples. This difference may possibly be caused by the location of water molecules that are available to form hydrate. Models that use laboratory-derived properties to predict behavior of natural gas hydrate must account for these differences.
© 2015 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- Introductory overview: Hydrate knowledge development
- Scanning Electron Microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice, and comparison to natural hydrates
- Dynamics of trimethylene oxide in a structure II clathrate hydrate
- The stability of methane hydrates in highly concentrated electrolyte solutions by differential scanning calorimetry and theoretical computation
- The effect of elevated methane pressure on methane hydrate dissociation
- Methane hydrate formation in partially water-saturated Ottawa sand
- Methanol—inhibitor or promoter of the formation of gas hydrates from deuterated ice?
- Investigating the performance of clathrate hydrate inhibitors using in situ Raman spectroscopy and differential scanning calorimetry
- Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate
- Experimental studies on the formation of porous gas hydrates
- Investigation of jet breakup and droplet size distribution of liquid CO2and water systems—implications for CO2hydrate formation for ocean carbon sequestration
- Measurement of clathrate hydrate precipitation from CO2solution by a nondestructive method
- Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology
- Growth-controlling processes of CO2gas hydrates
- Thermodynamic prediction of clathrate hydrate dissociation conditions in mesoporous media
- Modeling dynamic marine gas hydrate systems
- Late-stage, high-temperature processesing in the Allende meteorite: Record from Ca,Fe-rich silicate rims around dark inclusions
- Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma
- Nondestructive three-dimensional element-concentration mapping of a Cs-doped partially molten granite by X-ray computed tomography using synchrotron radiation
- A theoretical study of structural factors correlated with 23Na NMR parameters
- Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high-pressure rock from the Bohemian Massif
- Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China
- Letter. Novel high-pressure behavior in chlorite: A synchrotron XRD study of clinochlore to 27 GPa
- Letter. Periodic precipitation pattern formation in hydrothermally treated metamict zircon
- A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3
Artikel in diesem Heft
- Introductory overview: Hydrate knowledge development
- Scanning Electron Microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice, and comparison to natural hydrates
- Dynamics of trimethylene oxide in a structure II clathrate hydrate
- The stability of methane hydrates in highly concentrated electrolyte solutions by differential scanning calorimetry and theoretical computation
- The effect of elevated methane pressure on methane hydrate dissociation
- Methane hydrate formation in partially water-saturated Ottawa sand
- Methanol—inhibitor or promoter of the formation of gas hydrates from deuterated ice?
- Investigating the performance of clathrate hydrate inhibitors using in situ Raman spectroscopy and differential scanning calorimetry
- Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate
- Experimental studies on the formation of porous gas hydrates
- Investigation of jet breakup and droplet size distribution of liquid CO2and water systems—implications for CO2hydrate formation for ocean carbon sequestration
- Measurement of clathrate hydrate precipitation from CO2solution by a nondestructive method
- Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology
- Growth-controlling processes of CO2gas hydrates
- Thermodynamic prediction of clathrate hydrate dissociation conditions in mesoporous media
- Modeling dynamic marine gas hydrate systems
- Late-stage, high-temperature processesing in the Allende meteorite: Record from Ca,Fe-rich silicate rims around dark inclusions
- Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma
- Nondestructive three-dimensional element-concentration mapping of a Cs-doped partially molten granite by X-ray computed tomography using synchrotron radiation
- A theoretical study of structural factors correlated with 23Na NMR parameters
- Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high-pressure rock from the Bohemian Massif
- Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China
- Letter. Novel high-pressure behavior in chlorite: A synchrotron XRD study of clinochlore to 27 GPa
- Letter. Periodic precipitation pattern formation in hydrothermally treated metamict zircon
- A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3