Startseite Thermodynamic prediction of clathrate hydrate dissociation conditions in mesoporous media
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermodynamic prediction of clathrate hydrate dissociation conditions in mesoporous media

  • Maria Llamedo , Ross Anderson und Bahman Tohidi EMAIL logo
Veröffentlicht/Copyright: 28. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We present modifications to a previously reported statistical thermodynamics model that facilitates the prediction of capillary pressure effects on hydrate equilibria in narrow pores. The model uses the Valderrama modification of the Patel and Teja Equation of State (VPT EoS) for fugacity calculations in fluid phases, while the hydrate phase is modeled using the solid solution theory of van der Waals and Platteeuw (1959), as implemented by Cole and Goodwin (1990). The Kihara model for spherical molecules is applied to calculate the potential function for hydrate-forming gases. To account for capillary pressure effects on phase fugacities, we apply a correction similar to the Poynting correction for saturated liquids. This correction can be applied to any model capable of predicting bulk (unconfined) hydrate phase equilibria. The only new parameter required is hydrate-liquid interfacial tension-values for which we have derived previously from experimental data. The model assumes cylindrical pores, although differs from the majority of existing literature models in how the curvature of the solid-liquid interface is considered; we assume a curvature of 2/r for growth and 1/r for dissociation, in accordance with accepted capillary theory. Model predictions are validated against previously published experimental hydrate dissociation data for binary CO2-H2O, CH4-H2O and ternary CH4-CO2-H2O systems, and newly reported data for CH4-H2O-CH4O (3.5 mass% methanol aqueous solutions representing the salinity of seawater) systems, confined to mesoporous silica glass. Good agreement between predictions and experimental data is observed.

Received: 2003-10-1
Accepted: 2004-4-7
Published Online: 2015-3-28
Published in Print: 2004-8-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Introductory overview: Hydrate knowledge development
  2. Scanning Electron Microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice, and comparison to natural hydrates
  3. Dynamics of trimethylene oxide in a structure II clathrate hydrate
  4. The stability of methane hydrates in highly concentrated electrolyte solutions by differential scanning calorimetry and theoretical computation
  5. The effect of elevated methane pressure on methane hydrate dissociation
  6. Methane hydrate formation in partially water-saturated Ottawa sand
  7. Methanol—inhibitor or promoter of the formation of gas hydrates from deuterated ice?
  8. Investigating the performance of clathrate hydrate inhibitors using in situ Raman spectroscopy and differential scanning calorimetry
  9. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate
  10. Experimental studies on the formation of porous gas hydrates
  11. Investigation of jet breakup and droplet size distribution of liquid CO2and water systems—implications for CO2hydrate formation for ocean carbon sequestration
  12. Measurement of clathrate hydrate precipitation from CO2solution by a nondestructive method
  13. Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology
  14. Growth-controlling processes of CO2gas hydrates
  15. Thermodynamic prediction of clathrate hydrate dissociation conditions in mesoporous media
  16. Modeling dynamic marine gas hydrate systems
  17. Late-stage, high-temperature processesing in the Allende meteorite: Record from Ca,Fe-rich silicate rims around dark inclusions
  18. Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma
  19. Nondestructive three-dimensional element-concentration mapping of a Cs-doped partially molten granite by X-ray computed tomography using synchrotron radiation
  20. A theoretical study of structural factors correlated with 23Na NMR parameters
  21. Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high-pressure rock from the Bohemian Massif
  22. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China
  23. Letter. Novel high-pressure behavior in chlorite: A synchrotron XRD study of clinochlore to 27 GPa
  24. Letter. Periodic precipitation pattern formation in hydrothermally treated metamict zircon
  25. A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2004-8-915/html
Button zum nach oben scrollen