Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
Abstract
Group IV–VI semiconductors, such as PbTe, GeTe and SnTe, are promising thermoelectric materials at intermediate temperatures, which have potential application in electrical generation from waste heat. A phase diagram plays an important role for designing a high-performance material. In this mini review, we present the enhancement of the thermoelectric properties of GeTe- and SnTe-based semiconductors based on their phase diagrams. The figure of merit ZT for the p-type GeTe–Ag8GeTe6 composites was enhanced by reducing the thermal conductivity significantly using the eutectic microstructures formed by the Ag8GeTe6 second phase and the GeTe matrix based on the GeTe–Ag8GeTe6 pseudo-binary system. The partial substitution of Te by Se in p-type GeTe extends the solid solubility of Pb in GeTe0.5Se0.5 up to 30 mol.%, which further improves the thermoelectric properties of alloys in the GeTe–PbTe–Se system by modifying the carrier concentration, leading to increasing the Seebeck coefficient and reducing thermal conductivity over a wide composition range. The Sn1−yMn y Te alloy with 10 at.% excess Mn keeps its composition change along the SnTe–MnTe tie line and receives higher solid solubility of MnTe in SnTe. It shows much higher thermoelectric performance since the excess Mn compensates the Mn lost during the preparation as compared to the Sn1−xMn x Te alloy without excess Mn.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Bell, L. E. Science 2008, 321, 1457–1461. https://doi.org/10.1126/science.1158899.Suche in Google Scholar PubMed
2. Snyder, G. J., Toberer, E. S. Nat. Mater. 2008, 7, 105–114. https://doi.org/10.1038/nmat2090.Suche in Google Scholar PubMed
3. Shi, X. L., Zou, J., Chen, Z. G. Chem. Rev. 2020, 120, 7399–7515. https://doi.org/10.1021/acs.chemrev.0c00026.Suche in Google Scholar PubMed
4. Zhu, T., Liu, Y., Fu, C., Heremans, J. P., Snyder, J. G., Zhao, X. Adv. Mater. 2017, 29, 1605884. https://doi.org/10.1002/adma.201605884.Suche in Google Scholar PubMed
5. Biswas, K., He, J., Blum, I. D., Wu, C. I., Hogan, T. P., Seidman, D. N., Dravid, V. P., Kanatzidis, M. G. Nature 2012, 489, 414–418. https://doi.org/10.1038/nature11439.Suche in Google Scholar PubMed
6. Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G. J. Science 2008, 321, 554–557. https://doi.org/10.1126/science.1159725.Suche in Google Scholar PubMed
7. He, J., Girard, S. N., Kanatzidis, M. G., Dravid, V. P. Adv. Funct. Mater. 2010, 20, 764–772. https://doi.org/10.1002/adfm.200901905.Suche in Google Scholar
8. Pei, Y., May, A. F., Snyder, G. J. Adv. Energy Mater. 2011, 1, 291–296. https://doi.org/10.1002/aenm.201000072.Suche in Google Scholar
9. Hu, X., Jood, P., Ohta, M., Kunii, M., Nagase, K., Nishiate, H., Kanatzidis, M. G., Yamamoto, A. Energy Environ. Sci. 2016, 9, 517–529. https://doi.org/10.1039/c5ee02979a.Suche in Google Scholar
10. Jood, P., Male, J. P., Anand, S., Matsushita, Y., Takagiwa, Y., Kanatzidis, M. G., Snyder, G. J., Ohta, M. J. Am. Chem. Soc. 2020, 142, 15464–15475. https://doi.org/10.1021/jacs.0c07067.Suche in Google Scholar PubMed
11. Abdellaoui, L., Chen, Z. W., Yu, Y., Luo, T., Hanus, R., Schwarz, T., Villoro, R. B., Cojocaru-Miredin, O., Snyder, G. J., Raabe, D., Pei, Y. Z., Scheu, C., Zhang, S. Y. Adv. Funct. Mater. 2021, 31, 2101214. https://doi.org/10.1002/adfm.202101214.Suche in Google Scholar
12. Hong, M., Zou, J., Chen, Z. G. Adv. Mater. 2019, 31, 1807071. https://doi.org/10.1002/adma.201807071.Suche in Google Scholar PubMed
13. Wang, L., Li, J., Zhang, C., Ding, T., Xie, Y., Li, Y., Liu, F., Ao, W., Zhang, C. J. Mater. Chem. A 2020, 8, 1660–1667. https://doi.org/10.1039/c9ta11901a.Suche in Google Scholar
14. Xing, T., Zhu, C., Song, Q., Huang, H., Xiao, J., Ren, D., Shi, M., Qiu, P., Shi, X., Xu, F., Chen, L. Adv. Mater. 2021, 33, 2008773. https://doi.org/10.1002/adma.202008773.Suche in Google Scholar PubMed
15. Wang, L., Li, J., Xie, Y., Hu, L., Liu, F., Ao, W., Luo, J., Zhang, C. Mater. Today Phys. 2021, 16, 100308. https://doi.org/10.1016/j.mtphys.2020.100308.Suche in Google Scholar
16. Gelbstein, Y., Dado, B., Ben-Yehuda, O., Sadia, Y., Dashevsky, Z., Dariel, M. P. Chem. Mater. 2010, 22, 1054–1058. https://doi.org/10.1021/cm902009t.Suche in Google Scholar
17. Dou, Y., Li, J., Xie, Y., Wu, X., Hu, L., Liu, F., Ao, W., Liu, Y., Zhang, C. Mater. Today Phys. 2021, 20, 100497. https://doi.org/10.1016/j.mtphys.2021.100497.Suche in Google Scholar
18. Bai, G., Yu, Y., Wu, X., Li, J., Xie, Y., Hu, L., Liu, F., Wuttig, M., Cojocaru-Mirédin, O., Zhang, C. Adv. Energy Mater. 2021, 11, 2102012. https://doi.org/10.1002/aenm.202102012.Suche in Google Scholar
19. Xie, L., Chen, Y., Liu, R., Song, E., Xing, T., Deng, T., Song, Q., Liu, J., Zheng, R., Gao, X., Bai, S., Chen, L. Nano Energy 2020, 68, 104347. https://doi.org/10.1016/j.nanoen.2019.104347.Suche in Google Scholar
20. Liu, W. D., Wang, D. Z., Liu, Q., Zhou, W., Shao, Z., Chen, Z. G. Adv. Energy Mater. 2020, 10, 2000367. https://doi.org/10.1002/aenm.202000367.Suche in Google Scholar
21. Li, J., Zhang, X., Chen, Z., Lin, S., Li, W., Shen, J., Witting, I. T., Faghaninia, A., Chen, Y., Jain, A., Chen, L., Snyder, G. J., Pei, Y. Joule 2018, 2, 976–987. https://doi.org/10.1016/j.joule.2018.02.016.Suche in Google Scholar
22. Li, P., Ding, T., Li, J., Zhang, C., Dou, Y., Li, Y., Hu, L., Liu, F., Zhang, C. Adv. Funct. Mater. 2020, 30, 1910059. https://doi.org/10.1002/adfm.201910059.Suche in Google Scholar
23. Wu, D., Zhao, L. D., Hao, S., Jiang, Q., Zheng, F., Doak, J. W., Wu, H., Chi, H., Gelbstein, Y., Uher, C., Wolverton, C., Kanatzidis, M., He, J. J. Am. Chem. Soc. 2014, 136, 11412–11419. https://doi.org/10.1021/ja504896a.Suche in Google Scholar PubMed
24. Dong, J. F., Sun, F. H., Tang, H. C., Pei, J., Zhuang, H. L., Hu, H. H., Zhang, B. P., Pan, Y., Li, J. F. Energy Environ. Sci. 2019, 12, 1396–1403. https://doi.org/10.1039/c9ee00317g.Suche in Google Scholar
25. Zheng, L., Li, W., Lin, S., Li, J., Chen, Z., Pei, Y. ACS Energy Lett. 2017, 2, 563–568. https://doi.org/10.1021/acsenergylett.6b00671.Suche in Google Scholar
26. Tang, J., Gao, B., Lin, S., Wang, X., Zhang, X., Xiong, F., Li, W., Chen, Y., Pei, Y. ACS Energy Lett. 2018, 3, 1969–1974. https://doi.org/10.1021/acsenergylett.8b01098.Suche in Google Scholar
27. Hu, L., Zhang, Y., Wu, H., Li, J., Li, Y., McKenna, M., He, J., Liu, F., Pennycook, S. J., Zeng, X. Adv. Energy Mater. 2018, 8, 1802116. https://doi.org/10.1002/aenm.201802116.Suche in Google Scholar
28. Guo, F., Cui, B., Liu, Y., Meng, X., Cao, J., Zhang, Y., He, R., Liu, W., Wu, H., Pennycook, S. J., Cai, W., Sui, J. Small 2018, 14, 1802615. https://doi.org/10.1002/smll.201802615.Suche in Google Scholar PubMed
29. Zhao, L.-D., Tan, G., Hao, S., He, J., Pei, Y., Chi, H., Wang, H., Gong, S., Xu, H., Dravid, V. P., Uher, C., Snyder, G. J., Wolverton, C., Kanatzidis, M. G. Science 2016, 351, 141–144. https://doi.org/10.1126/science.aad3749.Suche in Google Scholar PubMed
30. Ge, Z. H., Qiu, Y., Chen, Y. X., Chong, X., Feng, J., Liu, Z. K., He, J. Adv. Funct. Mater. 2019, 29, 1902893. https://doi.org/10.1002/adfm.201902893.Suche in Google Scholar
31. Zhao, L. D., Lo, S. H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V. P., Kanatzidis, M. G. Nature 2014, 508, 373–377. https://doi.org/10.1038/nature13184.Suche in Google Scholar PubMed
32. Feng, Y., Li, J., Li, Y., Ding, T., Zhang, C., Hu, L., Liu, F., Ao, W., Zhang, C. J. Mater. Chem. A 2020, 8, 11370–11380. https://doi.org/10.1039/d0ta02758h.Suche in Google Scholar
33. Pei, Y., Wang, H., Snyder, G. J. Adv. Mater. 2012, 24, 6125–6135. https://doi.org/10.1002/adma.201202919.Suche in Google Scholar PubMed
34. Tang, Y., Gibbs, Z. M., Agapito, L. A., Li, G., Kim, H. S., Nardelli, M. B., Curtarolo, S., Snyder, G. J. Nat. Mater. 2015, 14, 1223–1228. https://doi.org/10.1038/nmat4430.Suche in Google Scholar PubMed
35. Heremans, J. P., Wiendlocha, B., Chamoire, A. M. Energy Environ. Sci. 2012, 5, 5510–5530. https://doi.org/10.1039/c1ee02612g.Suche in Google Scholar
36. Vineis, C. J., Shakouri, A., Majumdar, A., Kanatzidis, M. G. Adv. Mater. 2010, 22, 3970–3980. https://doi.org/10.1002/adma.201000839.Suche in Google Scholar PubMed
37. Kanatzidis, M. G. MRS Bull. 2015, 40, 687–695. https://doi.org/10.1557/mrs.2015.173.Suche in Google Scholar
38. Minnich, A. J., Dresselhaus, M. S., Ren, Z. F., Chen, G. Energy Environ. Sci. 2009, 2, 466. https://doi.org/10.1039/b822664b.Suche in Google Scholar
39. Lin, C.-h., Yen, W.-t., Tsai, Y.-f., Wu, H.-j. ACS Appl. Energy Mater. 2020, 3, 1311–1318. https://doi.org/10.1021/acsaem.9b02500.Suche in Google Scholar
40. Cherniushok, O., Cardoso-Gil, R., Parashchuk, T., Grin, Y., Wojciechowski, K. T. Inorg. Chem. 2021, 60, 2771–2782. https://doi.org/10.1021/acs.inorgchem.0c03549.Suche in Google Scholar PubMed
41. Li, X., Yang, P., Wang, Y., Zhang, Z., Qin, D., Xue, W., Chen, C., Huang, Y., Xie, X., Wang, X., Yang, M., Wang, C., Cao, F., Sui, J., Liu, X., Zhang, Q. Research 2020, 2020, 4630948. https://doi.org/10.34133/2020/4630948.10.34133/2020/4630948Suche in Google Scholar PubMed PubMed Central
42. Tsai, Y. F., Wei, P. C., Chang, L., Wang, K. K., Yang, C. C., Lai, Y. C., Hsing, C. R., Wei, C. M., He, J., Snyder, G. J., Wu, H. J. Adv. Mater. 2021, 33, 2005612. https://doi.org/10.1002/adma.202005612.Suche in Google Scholar PubMed
43. Li, J. Q., Li, L. F., Song, S. H., Liu, F. S., Ao, W. Q. J. Alloys Compd. 2013, 565, 144–147. https://doi.org/10.1016/j.jallcom.2013.02.149.Suche in Google Scholar
44. Gelbstein, Y. Acta Mater. 2013, 61, 1499–1507. https://doi.org/10.1016/j.actamat.2012.11.027.Suche in Google Scholar
45. Gorsse, S., Bauer Pereira, P., Decourt, R., Sellier, E. Chem. Mater. 2010, 22, 988–993. https://doi.org/10.1021/cm901862m.Suche in Google Scholar
46. Li, S. P., Li, J. Q., Wang, Q. B., Wang, L., Liu, F. S., Ao, W. Q. Solid State Sci. 2011, 13, 399–403. https://doi.org/10.1016/j.solidstatesciences.2010.11.045.Suche in Google Scholar
47. Li, J., Zhang, C., Deng, J., Liu, F., Ao, W., Li, Y., Zhang, C. J. Alloys Compd. 2018, 755, 184–191. https://doi.org/10.1016/j.jallcom.2018.04.317.Suche in Google Scholar
48. Li, J. Q., Lu, Z. W., Wu, H. J., Li, H. T., Liu, F. S., Ao, W. Q., Luo, J., He, J. Q. Acta Mater. 2014, 74, 215–223. https://doi.org/10.1016/j.actamat.2014.04.036.Suche in Google Scholar
49. Bauer Pereira, P., Sergueev, I., Gorsse, S., Dadda, J., Müller, E., Hermann, R. P. Phys. Status Solidi B 2013, 250, 1300–1307. https://doi.org/10.1002/pssb.201248412.Suche in Google Scholar
50. Tsu, R., Howard, W. E., Esaki, L. Phys. Rev. 1968, 172, 779–788. https://doi.org/10.1103/physrev.172.779.Suche in Google Scholar
51. Tung, Y. W., Cohen, M. L. Phys. Rev. 1969, 180, 823–826. https://doi.org/10.1103/physrev.180.823.Suche in Google Scholar
52. Villars, P., Prince, A., Okamoto, H. Handbook of Ternary Alloy Phase Diagrams; ASM International: Materials Park, USA, 1995.Suche in Google Scholar
53. Li, S. M., Li, J. Q., Yang, L., Liu, F. S., Ao, W. Q., Li, Y. Mater. Des. 2016, 108, 51–59. https://doi.org/10.1016/j.matdes.2016.06.084.Suche in Google Scholar
54. Zhao, S. Y., Chen, R., Li, J. Q., Yang, L., Zhang, C. H., Li, Y., Liu, F. S., Ao, W. Q. J. Alloys Compd. 2019, 777, 1334–1339. https://doi.org/10.1016/j.jallcom.2018.11.051.Suche in Google Scholar
55. Yang, J., Meisner, G. P., Chen, L. Appl. Phys. Lett. 2004, 85, 1140–1142. https://doi.org/10.1063/1.1783022.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- Preface of the issue of the 19th national symposium on phase diagram and materials design
- Review
- Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
- Original Papers
- Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
- Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
- Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
- Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
- Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
- Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
- Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
- Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
- Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
- Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
- Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
- Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
- Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
- Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
- Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
- The influence of SrCl2 on the corrosion behavior of magnesium
- Retraction
- Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Editorial
- Preface of the issue of the 19th national symposium on phase diagram and materials design
- Review
- Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
- Original Papers
- Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
- Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
- Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
- Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
- Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
- Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
- Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
- Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
- Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
- Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
- Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
- Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
- Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
- Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
- Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
- The influence of SrCl2 on the corrosion behavior of magnesium
- Retraction
- Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
- News
- DGM – Deutsche Gesellschaft für Materialkunde