Abstract
Diffusion coefficients in the hexagonal close-packed (hcp) Mg–Sn and Mg–Sc solid solutions and the body-centered cubic (bcc) Mg–Sc solid solution were re-evaluated via a method combing diffusion couple experiments, error function expansion fitting, and Sauer–Freise/Hall numerical calculation. The interdiffusion coefficients in hcp Mg–Sn alloys were found to gently rise as the content of Sn increases. The new experimental data amended the compositional dependency of Mg–Sn interdiffusion coefficients and gave rise to a new set of mobility parameters. The interdiffusion coefficients in Mg–Sc alloys were determined at 773 K, 803 K, and 848 K. They showed a slightly parabolic composition dependence in the hcp phase but a monotonic decreasing trend with the increase in Sc content in the bcc phase. The experimental results in this work enriched the determined diffusion coefficients in Mg alloys and effectively justified the assessed mobility parameters in assessments.
-
Author contribution: Yiming Yu: Investigation, Writing-original draft, Visualization; Zhengfei Zhou: Investigation, Data curation; Xiaoma Tao: Resources, Software, Funding acquisition; Jiang Wang: Resources, Funding acquisition, Project administration; Guanglong Xu: Methodology, Validation, Writing-review & editing, Visualization, Funding acquisition Yuwen Cui: Conceptualization, Methodology, Supervision, Project administration.
-
Research funding: This work was sponsored by the National Natural Science Foundation of China [Grants Nos. 51701094, 51911540474], Natural Science Foundation of Jiangsu Province, China [Grant No. BK20171014], and open foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University [Grant No. 2021GXYSOF05]. GX also acknowledges the support by Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology [Project No. 191011-K]. XT acknowledges the support from the Guangxi Natural Science Foundation [Grant No. 2018GXNSFAA281254]. YC acknowledges the support from the National Natural Science Foundation of China [Grant No. 51571113].
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Nie, J. F. Metall. Trans. A 2012, 43, 3891. https://doi.org/10.1007/s11661-012-1217-2.Search in Google Scholar
2. Mordike, B. L., Ebert, T. Mater. Sci. Eng., A 2001, 302, 37. https://doi.org/10.1016/S0921-5093(00)01351-4.Search in Google Scholar
3. Xia, X., Sun, W., Luo, A. A., Stone, D. S. Acta Mater. 2016, 111, 335. https://doi.org/10.1016/j.actamat.2016.03.068.Search in Google Scholar
4. Cheng, W. L., Park, S. S., You, B. S., Koo, B. H. Mater. Sci. Eng., A 2010, 527, 4650. https://doi.org/10.1016/j.msea.2010.03.031.Search in Google Scholar
5. Nayyeri, G., Mahmudi, R., Salehi, F. Mater. Sci. Eng., A 2010, 527, 5353. https://doi.org/10.1016/j.msea.2010.05.040.Search in Google Scholar
6. Kim, B., Do, J., Lee, S., Park, I. Mater. Sci. Eng., A 2010, 527, 6745. https://doi.org/10.1016/j.msea.2010.07.016.Search in Google Scholar
7. Safavi, M., Martin, N., Linseis, V., Palmino, F., Cherioux, F., Billard, A., Yazdi, M. A. P. J. Alloys Compd. 2019, 797, 1078. https://doi.org/10.1016/j.jallcom.2019.05.214.Search in Google Scholar
8. Yu, L., Yan, H., Chen, J., Xia, W., Song, M. Mater. Sci. Eng., A 2019, 772, 138707. https://doi.org/10.1016/j.msea.2019.138707.Search in Google Scholar
9. Ogawa, Y., Ando, D., Sutou, Y., Yoshimi, K., Koike, J. Mater. Sci. Eng., A 2016, 670, 335. https://doi.org/10.1016/j.msea.2016.06.028.Search in Google Scholar
10. Ando, D., Ogawa, Y., Suzuki, T., Sutou, Y., Koike, J. Mater. Lett. 2015, 161, 5. https://doi.org/10.1016/j.matlet.2015.06.057.Search in Google Scholar
11. Silva, C. J., Kula, A., Mishra, R. K., Niewczas, M. Mater. Sci. Eng., A 2017, 692, 199. https://doi.org/10.1016/j.msea.2017.03.053.Search in Google Scholar
12. Ogawa, Y., Ando, D., Sutou, Y., Koike, J. J. Jpn. Inst. Met. Mater. 2016, 80, 171. https://doi.org/10.2320/jinstmet.JBW201511.Search in Google Scholar
13. Dong, R., Xu, G., Ko, W., Wang, J., Tao, X., Cui, Y. Calphad 2021, 72, 102228. https://doi.org/10.1016/j.calphad.2020.102228.Search in Google Scholar
14. Ogawa, Y., Sutou, Y., Ando, D., Koike, J. J. Alloys Compd. 2018, 747, 854. https://doi.org/10.1016/j.jallcom.2018.03.064.Search in Google Scholar
15. Zhong, W., Zhao, J. C. Metall. Mater. Trans. A 2017, 48, 5778. https://doi.org/10.1007/s11661-017-4378-1.Search in Google Scholar
16. Zhang, Y., Liu, Y., Liu, S., Chen, H. L., Du, Y. J. Mater. Sci. Technol. 2020, 62, 70. https://doi.org/10.1016/j.jmst.2020.05.036.Search in Google Scholar
17. Zhong, W., Zhao, J. C. Acta Mater. 2020, 201, 191. https://doi.org/10.1016/j.actamat.2020.09.079.Search in Google Scholar
18. Nikitin, A. G., Spichak, S. V., Vedula, Y. S., Naumovets, A. G. J. Phys. D Appl. Phys. 2009, 42, 55301. https://doi.org/10.1088/0022-3727/42/5/055301.Search in Google Scholar
19. Chen, Y., Tang, B., Xu, G., Wang, C., Kou, H., Li, J., Cui, Y. Metall. Mater. Trans. A 2014, 45, 1647. https://doi.org/10.1007/s11661-014-2245-x.Search in Google Scholar
20. Sauer, F., Freise, V. Z. Phys. Chem. 2015, 66, 353. https://doi.org/10.1002/bbpc.19620660412.Search in Google Scholar
21. Hallstedt, B. Calphad 2007, 31, 292–302. https://doi.org/10.1016/j.calphad.2006.10.006.Search in Google Scholar
22. https://www.aqua-calc.com/calculate/mole-to-volume-and-weight.Search in Google Scholar
23. Hall, L. D. J. Chem. Phys. 1953, 21, 87. https://doi.org/10.1063/1.1698631.Search in Google Scholar
24. Combronde, J., Brebec, G. Acta Metall. 1972, 20, 37. https://doi.org/10.1016/0001-6160(72)90111-3.Search in Google Scholar
25. Zhou, B. C., Shang, S. L., Wang, Y., Liu, Z. K. Acta Mater. 2016, 103, 573. https://doi.org/10.1016/j.actamat.2015.10.010.Search in Google Scholar
26. Agarwal, R., Trinkle, D. R. Acta Mater. 2018, 150, 339. https://doi.org/10.1016/j.actamat.2018.03.025.Search in Google Scholar
27. Cheng, T., Tang, Y., Zhang, L. Calphad 2019, 64, 354. https://doi.org/10.1016/j.calphad.2019.01.005.Search in Google Scholar
28. J. Wang, W. Zheng, G. Xu, J. Llorca, Y. Cui J. Alloys Compd. 2019, 805, 237. https://doi.org/10.1016/j.jallcom.2019.07.084.Search in Google Scholar
29. Zhong, W., Hooshmand, M. S., Ghazisaeidi, M., Windl, W., Zhao, J. C. Acta Mater. 2020, 189, 214. https://doi.org/10.1016/j.actamat.2019.12.054.Search in Google Scholar
30. Ågren, J. Metall. Mater. Trans. A 2012, 43, 3453–3461. https://doi.org/10.1007/sl.Search in Google Scholar
31. Bryan, L. Z., Alieninov, P., Berglund, S. I., Manuel, V. M. Calphad 2015, 48, 123. https://doi.org/10.1016/j.calphad.2014.12.001.Search in Google Scholar
32. Askill, J. Tracer Diffusion Data for Metals, Alloys, and Simple Oxides; Springer US: Boston, MA, 1970; pp 19–26.10.1007/978-1-4684-6075-9_2Search in Google Scholar
33. Han, J. J., Wang, C. P., Liu, X. J. Shape Mem. Superelasticity 2013, 34, 17. https://doi.org/10.1007/s11669-012-0185-y.10.1007/s11669-012-0185-ySearch in Google Scholar
34. Chen, Z., Zhao, J. C. Materialia 2018, 2, 63. https://doi.org/10.1016/j.mtla.2018.06.011.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Preface of the issue of the 19th national symposium on phase diagram and materials design
- Review
- Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
- Original Papers
- Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
- Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
- Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
- Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
- Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
- Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
- Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
- Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
- Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
- Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
- Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
- Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
- Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
- Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
- Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
- The influence of SrCl2 on the corrosion behavior of magnesium
- Retraction
- Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- Preface of the issue of the 19th national symposium on phase diagram and materials design
- Review
- Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
- Original Papers
- Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
- Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
- Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
- Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
- Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
- Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
- Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
- Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
- Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
- Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
- Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
- Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
- Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
- Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
- Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
- The influence of SrCl2 on the corrosion behavior of magnesium
- Retraction
- Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
- News
- DGM – Deutsche Gesellschaft für Materialkunde