Home Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
Article
Licensed
Unlicensed Requires Authentication

Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system

  • Liming He , Nailing Qin , Jinxing Wei , Mei Li , Yujuan Song and Jialin Yan ORCID logo EMAIL logo
Published/Copyright: April 21, 2022
Become an author with De Gruyter Brill

Abstract

The metastable phase diagram of the Gd2O3–SrO–CoO x system in air was established based on the powder X-ray diffraction results of the 1100 °C-synthesized and then furnace-cooled or slowly-cooled (1 K min−1) samples. It consists of two solid solutions, Gd1−xSr x CoO3−δ (0.6 ≤ x ≤ 0.9) with a tetragonal I4/mmm superstructure and Gd x Sr2−xCoO4−δ (0.5 ≤ x ≤ 1.2) with a layered tetragonal I4/mmm K2NiF4-type structure, and one ternary compound Gd2SrCo2O7 with a tetragonal P42/mnm structure. The existence of six binary oxide compounds Gd2SrO4, GdCoO3, Sr2Co2O5 (R), Sr6Co5O15, Sr5Co4O12 and Sr14Co11O33 was confirmed. This metastable phase diagram is of technological interest in the controlled preparation of single-phase complex oxides. New phases Gd0.375Sr2.625Co2O7−δ and τ4 with an orthorhombic Immm structure were found in the quenched samples. Differences between the present metastable phase diagram and the reported 1100 °C equilibrium one are discussed.


Corresponding author: Prof. Jialin Yan, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004 P. R. China, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The financial support by the National Natural Science Foundation of China (No. 51961006) is gratefully acknowledged.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Golovanov, V., Mihaly, L., Moodenbaugh, A. R. Phys. Rev. B 1996, 53, 8207–8210. https://doi.org/10.1103/PhysRevB.53.8207.Search in Google Scholar

2. Khvostova, L. V., Galayda, A. P., Maklakova, A. V., Baten’kova, A. S., Startseva, A. A., Volkova, N. E., Gavrilova, L. Y., Cherepanov, V. A. Inorg. Mater. 2019, 55, 1001–1006. https://doi.org/10.1134/s0020168519080041.Search in Google Scholar

3. Kovalevsky, A. V., Kharton, V. V., Tikhonovich, V. N., Naumovich, E. N., Tonoyan, A. A., Reut, O. P., Boginsky, L. S. Mater. Sci. Eng., B 1998, 52, 105–116. https://doi.org/10.1016/s0921-5107(97)00292-4.Search in Google Scholar

4. Zhang, Z., Wu, H., Meng, X., Li, J., Zhan, Z. Electrochim. Acta 2014, 133, 509–514. https://doi.org/10.1016/j.electacta.2014.04.078.Search in Google Scholar

5. Takeda, Y., Ueno, H., Imanishi, N., Yamamoto, O., Sammes, N., Phillipps, M. B. Solid State Ionics 1996, 86–88, 1187–1190. https://doi.org/10.1016/0167-2738(96)00285-8.Search in Google Scholar

6. Petrov, A. N., Cherepanov, V. A., Zuev, A. Y. J. Solid State Electrochem. 2006, 10, 517–537. https://doi.org/10.1007/s10008-006-0124-0.Search in Google Scholar

7. Aguadero, A., Fawcett, L., Taub, S., Woolley, R., Wu, K.-T., Xu, N., Kilner, J. A., Skinner, S. J. J. Mater. Sci. 2012, 47, 3925–3948. https://doi.org/10.1007/s10853-011-6213-1.Search in Google Scholar

8. Yamaura, K., Huang, Q., Cava, R. J. J. Solid State Chem. 1999, 146, 277–286. https://doi.org/10.1006/jssc.1999.8375.Search in Google Scholar

9. Ryu, K. H., Roh, K. S., Lee, S. J. J. Solid State Chem. 1993, 105, 550–560. https://doi.org/10.1006/jssc.1993.1247.Search in Google Scholar

10. Khalyavin, D. D., Chapon, L. C., Suard, E., Parker, J. E., Thompson, S. P., Yaremchenko, A. A., Kharton, V. V. Phys. Rev. B 2011, 83, 140403. https://doi.org/10.1103/PhysRevB.83.140403.Search in Google Scholar

11. Mao, J., Li, L., Li, L. J. Magn. Magn Mater. 2017, 435, 179–183. https://doi.org/10.1016/j.jmmm.2017.04.013.Search in Google Scholar

12. Luo, X. G., Li, H., Chen, X. H., Xiong, Y. M., Wu, G., Wang, G. Y., Wang, C. H., Miao, W. J., Li, X. Chem. Mater. 2006, 18, 1029–1035. https://doi.org/10.1021/cm0521471.Search in Google Scholar

13. Rey-Cabezudo, C., Sanchez-Andujar, M., Mira, J., Fondado, A., Rivas, J., Senaris-Rodriguez, M. A. Chem. Mater. 2002, 14, 493–498. https://doi.org/10.1021/cm010051a.Search in Google Scholar

14. Wei, J. X., Yin, Y., Yan, J. L. Ceram. Int. 2021, 47, 19835–19842. https://doi.org/10.1016/j.ceramint.2021.03.322.Search in Google Scholar

15. Takami, T., Ikuta, H., Mizutani, U. Jpn. J. Appl. Phys. 2004, 43, 8208–8212. https://doi.org/10.1143/jjap.43.8208.Search in Google Scholar

16. Wong-Ng, W., Liu, G., Martin, J., Thomas, E. L., Lowhorn, N., Kaduk, J. A. J. Appl. Phys. 2010, 107, 033508–033501. https://doi.org/10.1063/1.3276158.Search in Google Scholar

17. Ang, R., Sun, Y. P., Luo, X., Hao, C. Y., Song, W. H. J. Phys. D Appl. Phys. 2008, 41, 045404. https://doi.org/10.1088/0022-3727/41/4/045404.Search in Google Scholar

18. Dudnikov, V. A., Orlov, Y. S., Kazak, N. V., Fedorov, A. S., Solov’yov, L. A., Vereshchagin, S. N., Burkov, A. T., Novikov, S. V., Gavrilkin, S. Y., Ovchinnikov, S. G. Ceram. Int. 2018, 44, 10299–10305. https://doi.org/10.1016/j.ceramint.2018.03.037.Search in Google Scholar

19. Cherepanov, V. A., Gavrilova, L. Y., Barkhatova, L. Y., Voronin, V. I., Trifonova, M. V., Bukhner, O. A. Ionics 1998, 4, 309–315. https://doi.org/10.1007/bf02375959.Search in Google Scholar

20. Aksenova, T. V., Efimova, T. G., Lebedev, O. I., Elkalashy, S. I., Urusova, A. S., Cherepanov, V. A. J. Solid State Chem. 2017, 248, 183–191. https://doi.org/10.1016/j.jssc.2017.02.002.Search in Google Scholar

21. Volkova, N. E., Maklakova, A. V, G. L. Y. Eur. J. Inorg. Chem. 2017, 2017, 3285–3292. https://doi.org/10.1002/ejic.201700321.Search in Google Scholar

22. Maklakova, A. V., Vlasova, M. A., Volkova, N. E., Gavrilova, L. Y., Cherepanov, V. A. J. Alloys Compd. 2021, 883, 160794. https://doi.org/10.1016/j.jallcom.2021.160794.Search in Google Scholar

23. Ivas, T., Grundy, A. N., Povoden, E., Zeljkovic, S., Gauckler, L. J. Acta Mater. 2010, 58, 4077–4087. https://doi.org/10.1016/j.actamat.2010.03.019.Search in Google Scholar

24. Lopato, L. M., Shevchenko, A. V., Kushchevskii, A. E. Sov. Powder Metall. Met. Ceram. 1972, 11, 70–73. https://doi.org/10.1007/bf00802883.Search in Google Scholar

25. Jankovsky, O., Sedmidubsky, D., Vitek, J., Simek, P., Sofer, Z. J. Eur. Ceram. Soc. 2015, 35, 935–940. https://doi.org/10.1016/j.jeurceramsoc.2014.09.040.Search in Google Scholar

26. Ivas, T., Povoden-Karadeniz, E., Grundy, N., Jud-Sierra, E., Graesslin, J., Gauckler, L. J. J. Am. Ceram. Soc. 2013, 96, 613–626. https://doi.org/10.1111/jace.12004.Search in Google Scholar

27. Young, O., Balakrishnan, G., Lees, M. R., Petrenko, O. A. Phys. Rev. B 2014, 90, 094421. https://doi.org/10.1103/PhysRevB.90.094421.Search in Google Scholar

28. Jiang, X., Ouyang, Z. W., Wang, Z. X., Xia, Z. C., Rao, G. H. J. Phys. D Appl. Phys. 2018, 51, 045001. https://doi.org/10.1088/1361-6463/aaa06c.Search in Google Scholar

29. Bezdicka, P., Wattiaux, A., Grenier, J. C., Pouchard, M., Hagenmuller, P. Z. Anorg. Allg. Chem. 1993, 619, 7–12. https://doi.org/10.1002/zaac.19936190104.Search in Google Scholar

30. Takeda, Y., Kanno, R., Takada, T., Yamamoto, O. Z. Anorg. Allg. Chem. 1986, 540, 259–270. https://doi.org/10.1002/zaac.19865400929.Search in Google Scholar

31. Hill, J. M., Dabrowski, B., Mitchell, J. F., Jorgensen, J. D. Phys. Rev. B 2006, 74, 174417. https://doi.org/10.1103/PhysRevB.74.174417.Search in Google Scholar

32. Matsuno, J., Okimoto, Y., Fang, Z., Yu, X. Z., Matsui, Y., Nagaosa, N., Kawasaki, M., Tokura, Y. Phys. Rev. Lett. 2004, 93, 167202. https://doi.org/10.1103/PhysRevLett.93.167202.Search in Google Scholar

33. Sullivan, E., Hadermann, J., Greaves, C. J. Solid State Chem. 2011, 184, 649–654. https://doi.org/10.1016/j.jssc.2011.01.026.Search in Google Scholar

34. Dann, S. E., Weller, M. T. J. Solid State Chem. 1995, 115, 499–507. https://doi.org/10.1006/jssc.1995.1165.Search in Google Scholar

35. Nakatsuka, A., Yoshiasa, A., Nakayama, N., Mizota, T., Takei, H. Acta Crystallogr. 2004, C60, i59–i60. https://doi.org/10.1107/S0108270104006134.Search in Google Scholar

36. Munoz, A., de la Calle, C., Alonso, J. A., Botta, P. M., Pardo, V., Baldomir, D., Rivas, J. Phys. Rev. B 2008, 78, 054404. https://doi.org/10.1103/PhysRevB.78.054404.Search in Google Scholar

37. Rodríguez, J., González-Calbet, J. M. Mater. Res. Bull. 1986, 21, 429–439. https://doi.org/10.1016/0025-5408(86)90008-5.Search in Google Scholar

38. Balamurugan, S. J. Supercond. Nov. Magnetism 2010, 23, 225–231. https://doi.org/10.1007/s10948-009-0519-0.Search in Google Scholar

39. Harrison, W. T. A., Hegwood, S. L., Jacobson, A. J. J. Chem. Soc. Chem. Commun. 1995, 1953–1954. https://doi.org/10.1039/C39950001953.Search in Google Scholar

40. Sun, J., Li, G., Li, Z., You, L., Lin, J. Inorg. Chem. 2006, 45, 8394–8402. https://doi.org/10.1021/ic060862m.Search in Google Scholar PubMed

41. Iwasaki, K., Ito, T., Matsui, T., Nagasaki, T., Ohta, S., Koumoto, K. Mater. Res. Bull. 2006, 41, 732–739. https://doi.org/10.1016/j.materresbull.2005.10.012.Search in Google Scholar

42. Boulahya, K., Parras, M., González-Calbet, J. M. J. Solid State Chem. 1999, 145, 116–127. https://doi.org/10.1006/jssc.1999.8230.Search in Google Scholar

43. Gourdon, O., Petricek, V., Dusek, M., Bezdicka, P., Durovic, S., Gyepesova, D., Evain, M. Acta Crystallogr. B 1999, 55, 841–848. https://doi.org/10.1107/s0108768199006485.Search in Google Scholar PubMed

44. Boulahya, K., Parras, M., González-Calbet, J. M. Chem. Mater. 2000, 12, 25–32. https://doi.org/10.1021/cm991028g.Search in Google Scholar

45. Li, K., Sheptyakov, D., Wang, Y., Loong, C.-K., Lin, J. J. Solid State Chem. 2011, 184, 888–892. https://doi.org/10.1016/j.jssc.2011.02.024.Search in Google Scholar

46. James, M., Cassidy, D., Goossens, D. J., Withersc, R. L. J. Solid State Chem. 2004, 177, 1886–1895. https://doi.org/10.1016/j.jssc.2004.01.012.Search in Google Scholar

47. James, M., Cassidy, D., Wilson, K. F., Horvat, J., Withers, R. L. Solid State Sci. 2004, 6, 655–662. https://doi.org/10.1016/j.solidstatesciences.2003.03.001.Search in Google Scholar

48. Istomin, S. Y., Drozhzhin, O. A., Svensson, G., Antipov, E. V. Solid State Sci. 2004, 6, 539–546. https://doi.org/10.1016/j.solidstatesciences.2004.03.029.Search in Google Scholar

49. Li, S., Ren, Y. J. Solid State Chem. 1995, 114, 286–288. https://doi.org/10.1006/jssc.1995.1042.Search in Google Scholar

50. Akiyama, K., Aoyama, H., Abe, N., Tojo, T., Kawaji, H., Atake, T. J. Therm. Anal. Calorim. 2005, 81, 583–586. https://doi.org/10.1007/s10973-005-0827-y.Search in Google Scholar

51. Hickey, P. J., Knee, C. S., Henry, P. F., Weller, M. T. Phys. Rev. B 2007, 75, 024113. https://doi.org/10.1103/PhysRevB.75.024113.Search in Google Scholar

52. Sanchez-Andujar, M., Senaris-Rodriguez, M. A. Z. Anorg. Allg. Chem. 2007, 633, 1890–1896. https://doi.org/10.1002/zaac.200700260.Search in Google Scholar

53. Sanchez-Andujar, M., Senaris-Rodriguez, M. A. Solid State Sci. 2004, 6, 21–27. https://doi.org/10.1016/j.solidstatesciences.2003.11.005.Search in Google Scholar

54. James, M., Tedesco, A., Cassidy, D., Colella, M., Smythe, P. J. J. Alloys Compd. 2006, 419, 201–207. https://doi.org/10.1016/j.jallcom.2005.08.080.Search in Google Scholar

55. Rodríguez-Carvajal, J. Physica B 1993, 192, 55–69. https://doi.org/10.1016/0921-4526(93)90108-I.Search in Google Scholar

56. Wong-Ng, W., Kaduk, J. A., Liu, G. Powder Diffr. 2011, 26, 22–30. https://doi.org/10.1154/1.3555294.Search in Google Scholar

57. Abraham, F., Minaud, S., Renard, C. J. Mater. Chem. 1994, 4, 1763–1764. https://doi.org/10.1039/JM9940401763.Search in Google Scholar

58. Blake, G. R., Sloan, J., Vente, J. F., Battle, P. D. Chem. Mater. 1998, 10, 3536–3547. https://doi.org/10.1021/cm980317m.Search in Google Scholar

59. Jankovsky, O., Sedmidubsky, D., Sofer, Z., Leitner, J., Ruzicka, K., Svoboda, P. Thermochim. Acta 2014, 575, 167–172. https://doi.org/10.1016/j.tca.2013.10.031.Search in Google Scholar

60. Grivel, J. C. J. Phase Equilibria Diffus. 2017, 38, 646–655. https://doi.org/10.1007/s11669-017-0581-4.Search in Google Scholar

61. Viciu, L., Zandbergen, H. W., Xu, Q., Huang, Q., Lee, M., Cava, R. J. J. Solid State Chem. 2006, 179, 500–511. https://doi.org/10.1016/j.jssc.2005.11.013.Search in Google Scholar

62. Vereshchagin, S. N., Dudnikov, V. A., Shishkina, N. N., Solovyov, L. A. Thermochim. Acta 2017, 655, 34–41. https://doi.org/10.1016/j.tca.2017.06.003.Search in Google Scholar

Received: 2021-07-13
Revised: 2022-03-13
Accepted: 2022-03-03
Published Online: 2022-04-21
Published in Print: 2022-05-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Preface of the issue of the 19th national symposium on phase diagram and materials design
  4. Review
  5. Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
  6. Original Papers
  7. Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
  8. Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
  9. Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
  10. Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
  11. Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
  12. Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
  13. Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
  14. Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
  15. Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
  16. Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
  17. Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
  18. Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
  19. Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
  20. Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
  21. Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
  22. The influence of SrCl2 on the corrosion behavior of magnesium
  23. Retraction
  24. Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
  25. News
  26. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8467/html
Scroll to top button