Abstract
The metastable phase diagram of the Gd2O3–SrO–CoO x system in air was established based on the powder X-ray diffraction results of the 1100 °C-synthesized and then furnace-cooled or slowly-cooled (1 K min−1) samples. It consists of two solid solutions, Gd1−xSr x CoO3−δ (0.6 ≤ x ≤ 0.9) with a tetragonal I4/mmm superstructure and Gd x Sr2−xCoO4−δ (0.5 ≤ x ≤ 1.2) with a layered tetragonal I4/mmm K2NiF4-type structure, and one ternary compound Gd2SrCo2O7 with a tetragonal P42/mnm structure. The existence of six binary oxide compounds Gd2SrO4, GdCoO3, Sr2Co2O5 (R), Sr6Co5O15, Sr5Co4O12 and Sr14Co11O33 was confirmed. This metastable phase diagram is of technological interest in the controlled preparation of single-phase complex oxides. New phases Gd0.375Sr2.625Co2O7−δ and τ4 with an orthorhombic Immm structure were found in the quenched samples. Differences between the present metastable phase diagram and the reported 1100 °C equilibrium one are discussed.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The financial support by the National Natural Science Foundation of China (No. 51961006) is gratefully acknowledged.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Golovanov, V., Mihaly, L., Moodenbaugh, A. R. Phys. Rev. B 1996, 53, 8207–8210. https://doi.org/10.1103/PhysRevB.53.8207.Search in Google Scholar
2. Khvostova, L. V., Galayda, A. P., Maklakova, A. V., Baten’kova, A. S., Startseva, A. A., Volkova, N. E., Gavrilova, L. Y., Cherepanov, V. A. Inorg. Mater. 2019, 55, 1001–1006. https://doi.org/10.1134/s0020168519080041.Search in Google Scholar
3. Kovalevsky, A. V., Kharton, V. V., Tikhonovich, V. N., Naumovich, E. N., Tonoyan, A. A., Reut, O. P., Boginsky, L. S. Mater. Sci. Eng., B 1998, 52, 105–116. https://doi.org/10.1016/s0921-5107(97)00292-4.Search in Google Scholar
4. Zhang, Z., Wu, H., Meng, X., Li, J., Zhan, Z. Electrochim. Acta 2014, 133, 509–514. https://doi.org/10.1016/j.electacta.2014.04.078.Search in Google Scholar
5. Takeda, Y., Ueno, H., Imanishi, N., Yamamoto, O., Sammes, N., Phillipps, M. B. Solid State Ionics 1996, 86–88, 1187–1190. https://doi.org/10.1016/0167-2738(96)00285-8.Search in Google Scholar
6. Petrov, A. N., Cherepanov, V. A., Zuev, A. Y. J. Solid State Electrochem. 2006, 10, 517–537. https://doi.org/10.1007/s10008-006-0124-0.Search in Google Scholar
7. Aguadero, A., Fawcett, L., Taub, S., Woolley, R., Wu, K.-T., Xu, N., Kilner, J. A., Skinner, S. J. J. Mater. Sci. 2012, 47, 3925–3948. https://doi.org/10.1007/s10853-011-6213-1.Search in Google Scholar
8. Yamaura, K., Huang, Q., Cava, R. J. J. Solid State Chem. 1999, 146, 277–286. https://doi.org/10.1006/jssc.1999.8375.Search in Google Scholar
9. Ryu, K. H., Roh, K. S., Lee, S. J. J. Solid State Chem. 1993, 105, 550–560. https://doi.org/10.1006/jssc.1993.1247.Search in Google Scholar
10. Khalyavin, D. D., Chapon, L. C., Suard, E., Parker, J. E., Thompson, S. P., Yaremchenko, A. A., Kharton, V. V. Phys. Rev. B 2011, 83, 140403. https://doi.org/10.1103/PhysRevB.83.140403.Search in Google Scholar
11. Mao, J., Li, L., Li, L. J. Magn. Magn Mater. 2017, 435, 179–183. https://doi.org/10.1016/j.jmmm.2017.04.013.Search in Google Scholar
12. Luo, X. G., Li, H., Chen, X. H., Xiong, Y. M., Wu, G., Wang, G. Y., Wang, C. H., Miao, W. J., Li, X. Chem. Mater. 2006, 18, 1029–1035. https://doi.org/10.1021/cm0521471.Search in Google Scholar
13. Rey-Cabezudo, C., Sanchez-Andujar, M., Mira, J., Fondado, A., Rivas, J., Senaris-Rodriguez, M. A. Chem. Mater. 2002, 14, 493–498. https://doi.org/10.1021/cm010051a.Search in Google Scholar
14. Wei, J. X., Yin, Y., Yan, J. L. Ceram. Int. 2021, 47, 19835–19842. https://doi.org/10.1016/j.ceramint.2021.03.322.Search in Google Scholar
15. Takami, T., Ikuta, H., Mizutani, U. Jpn. J. Appl. Phys. 2004, 43, 8208–8212. https://doi.org/10.1143/jjap.43.8208.Search in Google Scholar
16. Wong-Ng, W., Liu, G., Martin, J., Thomas, E. L., Lowhorn, N., Kaduk, J. A. J. Appl. Phys. 2010, 107, 033508–033501. https://doi.org/10.1063/1.3276158.Search in Google Scholar
17. Ang, R., Sun, Y. P., Luo, X., Hao, C. Y., Song, W. H. J. Phys. D Appl. Phys. 2008, 41, 045404. https://doi.org/10.1088/0022-3727/41/4/045404.Search in Google Scholar
18. Dudnikov, V. A., Orlov, Y. S., Kazak, N. V., Fedorov, A. S., Solov’yov, L. A., Vereshchagin, S. N., Burkov, A. T., Novikov, S. V., Gavrilkin, S. Y., Ovchinnikov, S. G. Ceram. Int. 2018, 44, 10299–10305. https://doi.org/10.1016/j.ceramint.2018.03.037.Search in Google Scholar
19. Cherepanov, V. A., Gavrilova, L. Y., Barkhatova, L. Y., Voronin, V. I., Trifonova, M. V., Bukhner, O. A. Ionics 1998, 4, 309–315. https://doi.org/10.1007/bf02375959.Search in Google Scholar
20. Aksenova, T. V., Efimova, T. G., Lebedev, O. I., Elkalashy, S. I., Urusova, A. S., Cherepanov, V. A. J. Solid State Chem. 2017, 248, 183–191. https://doi.org/10.1016/j.jssc.2017.02.002.Search in Google Scholar
21. Volkova, N. E., Maklakova, A. V, G. L. Y. Eur. J. Inorg. Chem. 2017, 2017, 3285–3292. https://doi.org/10.1002/ejic.201700321.Search in Google Scholar
22. Maklakova, A. V., Vlasova, M. A., Volkova, N. E., Gavrilova, L. Y., Cherepanov, V. A. J. Alloys Compd. 2021, 883, 160794. https://doi.org/10.1016/j.jallcom.2021.160794.Search in Google Scholar
23. Ivas, T., Grundy, A. N., Povoden, E., Zeljkovic, S., Gauckler, L. J. Acta Mater. 2010, 58, 4077–4087. https://doi.org/10.1016/j.actamat.2010.03.019.Search in Google Scholar
24. Lopato, L. M., Shevchenko, A. V., Kushchevskii, A. E. Sov. Powder Metall. Met. Ceram. 1972, 11, 70–73. https://doi.org/10.1007/bf00802883.Search in Google Scholar
25. Jankovsky, O., Sedmidubsky, D., Vitek, J., Simek, P., Sofer, Z. J. Eur. Ceram. Soc. 2015, 35, 935–940. https://doi.org/10.1016/j.jeurceramsoc.2014.09.040.Search in Google Scholar
26. Ivas, T., Povoden-Karadeniz, E., Grundy, N., Jud-Sierra, E., Graesslin, J., Gauckler, L. J. J. Am. Ceram. Soc. 2013, 96, 613–626. https://doi.org/10.1111/jace.12004.Search in Google Scholar
27. Young, O., Balakrishnan, G., Lees, M. R., Petrenko, O. A. Phys. Rev. B 2014, 90, 094421. https://doi.org/10.1103/PhysRevB.90.094421.Search in Google Scholar
28. Jiang, X., Ouyang, Z. W., Wang, Z. X., Xia, Z. C., Rao, G. H. J. Phys. D Appl. Phys. 2018, 51, 045001. https://doi.org/10.1088/1361-6463/aaa06c.Search in Google Scholar
29. Bezdicka, P., Wattiaux, A., Grenier, J. C., Pouchard, M., Hagenmuller, P. Z. Anorg. Allg. Chem. 1993, 619, 7–12. https://doi.org/10.1002/zaac.19936190104.Search in Google Scholar
30. Takeda, Y., Kanno, R., Takada, T., Yamamoto, O. Z. Anorg. Allg. Chem. 1986, 540, 259–270. https://doi.org/10.1002/zaac.19865400929.Search in Google Scholar
31. Hill, J. M., Dabrowski, B., Mitchell, J. F., Jorgensen, J. D. Phys. Rev. B 2006, 74, 174417. https://doi.org/10.1103/PhysRevB.74.174417.Search in Google Scholar
32. Matsuno, J., Okimoto, Y., Fang, Z., Yu, X. Z., Matsui, Y., Nagaosa, N., Kawasaki, M., Tokura, Y. Phys. Rev. Lett. 2004, 93, 167202. https://doi.org/10.1103/PhysRevLett.93.167202.Search in Google Scholar
33. Sullivan, E., Hadermann, J., Greaves, C. J. Solid State Chem. 2011, 184, 649–654. https://doi.org/10.1016/j.jssc.2011.01.026.Search in Google Scholar
34. Dann, S. E., Weller, M. T. J. Solid State Chem. 1995, 115, 499–507. https://doi.org/10.1006/jssc.1995.1165.Search in Google Scholar
35. Nakatsuka, A., Yoshiasa, A., Nakayama, N., Mizota, T., Takei, H. Acta Crystallogr. 2004, C60, i59–i60. https://doi.org/10.1107/S0108270104006134.Search in Google Scholar
36. Munoz, A., de la Calle, C., Alonso, J. A., Botta, P. M., Pardo, V., Baldomir, D., Rivas, J. Phys. Rev. B 2008, 78, 054404. https://doi.org/10.1103/PhysRevB.78.054404.Search in Google Scholar
37. Rodríguez, J., González-Calbet, J. M. Mater. Res. Bull. 1986, 21, 429–439. https://doi.org/10.1016/0025-5408(86)90008-5.Search in Google Scholar
38. Balamurugan, S. J. Supercond. Nov. Magnetism 2010, 23, 225–231. https://doi.org/10.1007/s10948-009-0519-0.Search in Google Scholar
39. Harrison, W. T. A., Hegwood, S. L., Jacobson, A. J. J. Chem. Soc. Chem. Commun. 1995, 1953–1954. https://doi.org/10.1039/C39950001953.Search in Google Scholar
40. Sun, J., Li, G., Li, Z., You, L., Lin, J. Inorg. Chem. 2006, 45, 8394–8402. https://doi.org/10.1021/ic060862m.Search in Google Scholar PubMed
41. Iwasaki, K., Ito, T., Matsui, T., Nagasaki, T., Ohta, S., Koumoto, K. Mater. Res. Bull. 2006, 41, 732–739. https://doi.org/10.1016/j.materresbull.2005.10.012.Search in Google Scholar
42. Boulahya, K., Parras, M., González-Calbet, J. M. J. Solid State Chem. 1999, 145, 116–127. https://doi.org/10.1006/jssc.1999.8230.Search in Google Scholar
43. Gourdon, O., Petricek, V., Dusek, M., Bezdicka, P., Durovic, S., Gyepesova, D., Evain, M. Acta Crystallogr. B 1999, 55, 841–848. https://doi.org/10.1107/s0108768199006485.Search in Google Scholar PubMed
44. Boulahya, K., Parras, M., González-Calbet, J. M. Chem. Mater. 2000, 12, 25–32. https://doi.org/10.1021/cm991028g.Search in Google Scholar
45. Li, K., Sheptyakov, D., Wang, Y., Loong, C.-K., Lin, J. J. Solid State Chem. 2011, 184, 888–892. https://doi.org/10.1016/j.jssc.2011.02.024.Search in Google Scholar
46. James, M., Cassidy, D., Goossens, D. J., Withersc, R. L. J. Solid State Chem. 2004, 177, 1886–1895. https://doi.org/10.1016/j.jssc.2004.01.012.Search in Google Scholar
47. James, M., Cassidy, D., Wilson, K. F., Horvat, J., Withers, R. L. Solid State Sci. 2004, 6, 655–662. https://doi.org/10.1016/j.solidstatesciences.2003.03.001.Search in Google Scholar
48. Istomin, S. Y., Drozhzhin, O. A., Svensson, G., Antipov, E. V. Solid State Sci. 2004, 6, 539–546. https://doi.org/10.1016/j.solidstatesciences.2004.03.029.Search in Google Scholar
49. Li, S., Ren, Y. J. Solid State Chem. 1995, 114, 286–288. https://doi.org/10.1006/jssc.1995.1042.Search in Google Scholar
50. Akiyama, K., Aoyama, H., Abe, N., Tojo, T., Kawaji, H., Atake, T. J. Therm. Anal. Calorim. 2005, 81, 583–586. https://doi.org/10.1007/s10973-005-0827-y.Search in Google Scholar
51. Hickey, P. J., Knee, C. S., Henry, P. F., Weller, M. T. Phys. Rev. B 2007, 75, 024113. https://doi.org/10.1103/PhysRevB.75.024113.Search in Google Scholar
52. Sanchez-Andujar, M., Senaris-Rodriguez, M. A. Z. Anorg. Allg. Chem. 2007, 633, 1890–1896. https://doi.org/10.1002/zaac.200700260.Search in Google Scholar
53. Sanchez-Andujar, M., Senaris-Rodriguez, M. A. Solid State Sci. 2004, 6, 21–27. https://doi.org/10.1016/j.solidstatesciences.2003.11.005.Search in Google Scholar
54. James, M., Tedesco, A., Cassidy, D., Colella, M., Smythe, P. J. J. Alloys Compd. 2006, 419, 201–207. https://doi.org/10.1016/j.jallcom.2005.08.080.Search in Google Scholar
55. Rodríguez-Carvajal, J. Physica B 1993, 192, 55–69. https://doi.org/10.1016/0921-4526(93)90108-I.Search in Google Scholar
56. Wong-Ng, W., Kaduk, J. A., Liu, G. Powder Diffr. 2011, 26, 22–30. https://doi.org/10.1154/1.3555294.Search in Google Scholar
57. Abraham, F., Minaud, S., Renard, C. J. Mater. Chem. 1994, 4, 1763–1764. https://doi.org/10.1039/JM9940401763.Search in Google Scholar
58. Blake, G. R., Sloan, J., Vente, J. F., Battle, P. D. Chem. Mater. 1998, 10, 3536–3547. https://doi.org/10.1021/cm980317m.Search in Google Scholar
59. Jankovsky, O., Sedmidubsky, D., Sofer, Z., Leitner, J., Ruzicka, K., Svoboda, P. Thermochim. Acta 2014, 575, 167–172. https://doi.org/10.1016/j.tca.2013.10.031.Search in Google Scholar
60. Grivel, J. C. J. Phase Equilibria Diffus. 2017, 38, 646–655. https://doi.org/10.1007/s11669-017-0581-4.Search in Google Scholar
61. Viciu, L., Zandbergen, H. W., Xu, Q., Huang, Q., Lee, M., Cava, R. J. J. Solid State Chem. 2006, 179, 500–511. https://doi.org/10.1016/j.jssc.2005.11.013.Search in Google Scholar
62. Vereshchagin, S. N., Dudnikov, V. A., Shishkina, N. N., Solovyov, L. A. Thermochim. Acta 2017, 655, 34–41. https://doi.org/10.1016/j.tca.2017.06.003.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Preface of the issue of the 19th national symposium on phase diagram and materials design
- Review
- Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
- Original Papers
- Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
- Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
- Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
- Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
- Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
- Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
- Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
- Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
- Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
- Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
- Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
- Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
- Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
- Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
- Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
- The influence of SrCl2 on the corrosion behavior of magnesium
- Retraction
- Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- Preface of the issue of the 19th national symposium on phase diagram and materials design
- Review
- Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
- Original Papers
- Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
- Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
- Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
- Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
- Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
- Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
- Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
- Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
- Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
- Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
- Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
- Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
- Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
- Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
- Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
- The influence of SrCl2 on the corrosion behavior of magnesium
- Retraction
- Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
- News
- DGM – Deutsche Gesellschaft für Materialkunde