Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
-
Jinxiang Guo
, Zhaofei Tong
and Huaiying Zhou
Abstract
The phase equilibrium relationship of the Bi2O3–Fe2O3–Nd2O3 system at 973 K was established by means of X-ray diffraction. The phase diagram contains 9 single-phase regions, 5 two-phase regions, 7 three-phase regions and no ternary compounds. There are three solid solutions of Bi1.446Nd0.554O3-type, R3c-BiFeO3 and Pnma-NdFeO3. The lattice parameters of the Nd1-xBi x O3 compound increase with increasing Bi2O3 content, but the XRD peaks shift to lower 2θ values when x is 0–0.75. The effect of different mass percentages of two phases, NdFeO3 and Bi25FeO40, on the performance of the sample is explored. When the mass percentage of the second phase Bi25FeO40 increases, the magnetic properties of the samples decrease instead. The sample with a mass ratio of 59 % Bi25FeO40 shows the best adsorption performance. The effective bandwidths of the samples are 2.12 GHz, 2.76 GHz and 2.25 GHz when the mass percentage of the second phase is 17 wt.%, 59 wt.%, and 77 wt.%, respectively.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work is financially supported by the National Natural Science Foundations of China (Grant Nos. 51871066, 51761007). Technology Base and Special Talents at Guangxi (Grant No. 2018AD19088).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Phang, S. W., Hino, T., Abdullah, M. H., Kuramoto, N. Mater. Chem. Phys. 2007, 104, 327–335. https://doi.org/10.1016/j.matchemphys.2007.03.031.Search in Google Scholar
2. Speranskaya, E. I., Skorikov, V. M., Rode, E. Y., Terekhova, V. A. Russ. Chem. Bull. 1965, 14, 873–874. https://doi.org/10.1007/bf00845708.Search in Google Scholar
3. Maitre, A., Francois, M., Gachon, J. C. J. Ph. Equilibria Diffus. 2004, 25, 59–67. https://doi.org/10.1361/10549710417687.Search in Google Scholar
4. Nielsen, J. W., Blank, S. L. J. Cryst. Growth 1972, 13–14, 702–705. https://doi.org/10.1016/0022-0248(72)90545-3.Search in Google Scholar
5. Jakobsson, L. K., Tranell, G., Jung, I. H. Metall. Mater. Trans. B 2017, 48, 60–72. https://doi.org/10.1007/s11663-016-0748-0.10.1007/s11663-016-0748-0Search in Google Scholar
6. Sun, Y. Z., Rao, G. H., Yang, J. L., Tang, W. H., Chen, X. L., Liang, J. K. J. Alloys Compd. 1997, 248, 106–111. https://doi.org/10.1016/s0925-8388(96)02507-8.Search in Google Scholar
7. Lan, Y. C., Chen, X. L., Li, J. Q. J. Solid State Chem. 2000, 153, 30–33. https://doi.org/10.1006/jssc.2000.8734.Search in Google Scholar
8. Marezio, M., Remeika, J. P., Dernier, P. D. Acta Crystallogr. 1970, 26, 2008. https://doi.org/10.1107/s0567740870005319.Search in Google Scholar
9. Yao, Q. R., Cai, J., Zhou, H. Y., Rao, G. H., Wang, Z. M., Deng, J. Q. J. Alloys Compd. 2015, 633, 170–173. https://doi.org/10.1016/j.jallcom.2015.01.123.Search in Google Scholar
10. Hu, Q. C., Chen, Y. Q., Lu, P. W., Huang, F., Wang, X. Chin. Phys. B 2014, 23, 5. https://doi.org/10.1088/1674-1056/23/4/048109.Search in Google Scholar
11. Pikula, T., Dzik, J., Lisinska-Czekaj, A., Czekaj, D., Jartych, E. J. Alloys Compd. 2014, 606, 1–6. https://doi.org/10.1016/j.jallcom.2014.04.011.Search in Google Scholar
12. Yao, Q. R., Shen, Y. H., Zhou, H. Y., Rao, G. H., Deng, J. Q., Pan, S. K. J. Rare Earths 2016, 34, 396–400. https://doi.org/10.1016/s1002-0721(16)60039-x.Search in Google Scholar
13. Tong, Z. F., Yao, Q. R., Deng, J. Q., Cheng, L. C., Chuang, T., Wang, J., Rao, G. H., Zhou, H. Y., Wang, Z. M. Mater. Sci. Eng. B 2021, 268, 115092. https://doi.org/10.1016/j.mseb.2021.115092.Search in Google Scholar
14. Xiang, J., Hou, Z. R., Zhang, X. K., Gong, L., Wu, Z. P., Mi, J. L. J. Alloys Compd. 2018, 737, 412–420. https://doi.org/10.1016/j.jallcom.2017.12.047.Search in Google Scholar
15. Wang, X., Li, Q. F., Su, Z. J., Gong, W., Gong, R. Z., Chen, Y. J., Harris, V. G. J. Alloys Compd. 2015, 643, 111–115. https://doi.org/10.1016/j.jallcom.2015.04.122.Search in Google Scholar
16. Tian, C., Yao, Q. R., Tong, Z. F., Rao, G. H., Deng, J. Q., Wang, Z. M., Wang, J., Zhou, H. Y., Zhao, J. T. J. Alloys Compd. 2021, 859, 157757. https://doi.org/10.1016/j.jallcom.2020.157757.Search in Google Scholar
17. Shu, R. W., Wu, Y., Li, Z. Y., Zhang, J. B., Wan, Z. L., Liu, Y., Zheng, M. D. Compos. Sci. Technol. 2019, 184, 107839. https://doi.org/10.1016/j.compscitech.2019.107839.Search in Google Scholar
18. Shu, R. W., Zhang, G. Y., Wang, X., Gao, X., Wang, M., Gan, Y., Shi, J. J., He, J. Chem. Eng. J. 2018, 337, 242–255. https://doi.org/10.1016/j.cej.2017.12.106.Search in Google Scholar
19. Yuan, Y., Wei, S. C., Liang, Y., Wang, B., Wang, Y. J., Xin, W., Wang, X. L., Zhang, Y. J. Alloys Compd. 2021, 867, 159040. https://doi.org/10.1016/j.jallcom.2021.159040.Search in Google Scholar
20. Rusly, S., Ismail, I., Matori, K., Abbas, Z., Shaari, A., Awang, Z., Ibrahim, I., Idris, F., Zaid, M., Mahmood, M., Hasan, I. Ceram. Int. 2020, 46, 737–746.10.1016/j.ceramint.2019.09.027Search in Google Scholar
21. Li, Y., Liu, X. F., Nie, X. Y., Yang, W. W., Wang, Y. D., Yu, R. H., Shui, J. L. Adv. Funct. Mater. 2019, 29, 1807624. https://doi.org/10.1002/adfm.201807624.Search in Google Scholar
22. Zhang, X. J., Zhu, J. Q., Yin, P. G., Guo, A. P., Huang, A. P., Guo, L., Wang, G. S. Adv. Funct. Mater. 2018, 28, 1800761. https://doi.org/10.1002/adfm.201800761.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Preface of the issue of the 19th national symposium on phase diagram and materials design
- Review
- Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
- Original Papers
- Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
- Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
- Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
- Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
- Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
- Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
- Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
- Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
- Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
- Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
- Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
- Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
- Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
- Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
- Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
- The influence of SrCl2 on the corrosion behavior of magnesium
- Retraction
- Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- Preface of the issue of the 19th national symposium on phase diagram and materials design
- Review
- Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
- Original Papers
- Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
- Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
- Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
- Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
- Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
- Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
- Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
- Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
- Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
- Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
- Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
- Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
- Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
- Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
- Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
- The influence of SrCl2 on the corrosion behavior of magnesium
- Retraction
- Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
- News
- DGM – Deutsche Gesellschaft für Materialkunde