Abstract
The influence of SrCl2 on the corrosion behavior of magnesium (Mg) in 3.5 wt.% NaCl was evaluated by immersion testing, electrochemical measurement and the examination of the corrosion morphology. A small addition of SrCl2 decreased the corrosion rate of Mg. In contrast, an excess of SrCl2 increased the corrosion rate of Mg, even higher than that in 3.5 wt.% NaCl. There is a competition effect of the SrCl2 on the corrosion behavior of Mg in 3.5 wt.% NaCl. The Sr2+ can improve the protection of corrosion product film through the formation of SrCO3. While the Cl− can damage the protection of the corrosion product film. The Mg specimen achieved the best corrosion resistance in 3.5 wt.% NaCl + 0.005 mol L−1 SrCl2.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was supported by National Natural Science Foundation of China No. 51801168 and No. 51731008.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Atrens, A., Liu, M., Zainal Abidin, N. I. Mater. Sci. Eng. B 2011, 176, 1609–1636. https://doi.org/10.1016/j.mseb.2010.12.017.Suche in Google Scholar
2. Witte, F. Acta Biomater. 2010, 6, 1680–1692. https://doi.org/10.1016/j.actbio.2010.02.028.Suche in Google Scholar PubMed
3. Abbott, T. Corrosion 2015, 71, 120–127. https://doi.org/10.5006/1474.Suche in Google Scholar
4. Esmaily, M., Svensson, J. E., Fajardo, S., Birbilis, N., Frankel, G. S., Virtanen, S., Arrabal, R., Thomas, S., Johansson, L. G. Prog. Mater. Sci. 2017, 89, 92–193. https://doi.org/10.1016/j.pmatsci.2017.04.011.Suche in Google Scholar
5. Huang, J. F., Song, G. L., Atrens, A., Dargusch, M. J. Mater. Sci. Technol. 2020, 57, 204–220. https://doi.org/10.1016/j.jmst.2020.03.060.Suche in Google Scholar
6. Birbilis, N., King, A., Thomas, S., Frankel, G., Scully, J. Electrochim. Acta 2014, 132, 277–283.10.1016/j.electacta.2014.03.133Suche in Google Scholar
7. Cao, F., Shi, Z., Hofstetter, J., Uggowitzer, P. J., Song, G., Liu, M., Atrens, A. Corrosion Sci. 2013, 75, 78–99. https://doi.org/10.1016/j.corsci.2013.05.018.Suche in Google Scholar
8. Liu, H., Cao, F., Song, G.-L., Zheng, D., Shi, Z., Dargusch, M. S., Atrens, A. J. Mater. Sci. Technol. 2019, 35, 2003–2016. https://doi.org/10.1016/j.jmst.2019.05.001.Suche in Google Scholar
9. Yu, R. H., Cao, F. Y., Zhao, C., Yao, J. H., Wang, J. J., Wang, Z. M., Zou, Z. W., Zheng, D. J., Cai, J. L., Song, G. L. Corros. Eng. Sci. Technol. 2020, 55, 609–621. https://doi.org/10.1080/1478422x.2020.1768643.Suche in Google Scholar
10. Cao, F., Song, G.-L., Atrens, A. Corrosion Sci. 2016, 111, 835–845. https://doi.org/10.1016/j.corsci.2016.05.041.Suche in Google Scholar
11. Cao, F., Shi, Z., Song, G.-L., Liu, M., Atrens, A. Corrosion Sci. 2013, 76, 60–97. https://doi.org/10.1016/j.corsci.2013.06.030.Suche in Google Scholar
12. Cheng, M., Chen, J., Yan, H., Su, B., Yu, Z., Xia, W., Gong, X. J. Alloys Compd. 2017, 691, 95–102. https://doi.org/10.1016/j.jallcom.2016.08.164.Suche in Google Scholar
13. Sadeghi, A., Hasanpur, E., Bahmani, A., Shin, K. S. Corrosion Sci. 2018, 141, 117–126. https://doi.org/10.1016/j.corsci.2018.06.018.Suche in Google Scholar
14. Liu, S. F., Liu, L. Y., Kang, L. G. J. Alloys Compd. 2008, 450, 546–550. https://doi.org/10.1016/j.jallcom.2007.07.053.Suche in Google Scholar
15. Meng, X., Jiang, Z., Zhu, S., Guan, S. J. Alloys Compd. 2020, 838, 155611. https://doi.org/10.1016/j.jallcom.2020.155611.Suche in Google Scholar
16. Tian, Q., Zhang, C., Deo, M., Rivera-Castaneda, L., Masoudipour, N., Guan, R., Liu, H. Mater. Sci. Eng. C 2019, 96, 248–262. https://doi.org/10.1016/j.msec.2018.11.018.Suche in Google Scholar
17. Marie, P. J. Osteoporos. Int. 2005, 16, S7–S10. https://doi.org/10.1007/s00198-004-1753-8.Suche in Google Scholar
18. Bornapour, M., Celikin, M., Cerruti, M., Pekguleryuz, M. Mater. Sci. Eng. C 2014, 35, 267–282. https://doi.org/10.1016/j.msec.2013.11.011.Suche in Google Scholar
19. Chen, G., Peng, X., Fan, P., Xie, W., Wei, Q., Ma, H., Yang, Y. Trans. Nonferrous Metals Soc. China 2011, 21, 725–731. https://doi.org/10.1016/S1003-6326(11)60772-3.Suche in Google Scholar
20. Ke, C., Song, M.-S., Zeng, R.-C., Qiu, Y., Zhang, Y., Zhang, R.-F., Liu, R.-L., Cole, I., Birbilis, N., Chen, X.-B.. Corrosion Sci. 2019, 151, 143–153. https://doi.org/10.1016/j.corsci.2019.02.024.Suche in Google Scholar
21. Amaravathy, P., Kumar, T. S. S. J. Magnes. Alloy. 2019, 7, 584–596. https://doi.org/10.1016/j.jma.2019.05.014.Suche in Google Scholar
22. Cao, F., Zhao, C., You, J., Hu, J., Zheng, D. J., Song, G. L. Adv. Eng. Mater. 2019, 21, 1900363. https://doi.org/10.1002/adem.201900363.Suche in Google Scholar
23. Zhang, T., Chen, C., Shao, Y., Meng, G., Wang, F., Li, X., Dong, C. Electrochim. Acta 2008, 53, 7921–7931. https://doi.org/10.1016/j.electacta.2008.05.074.Suche in Google Scholar
24. Cao, F., Zhao, C., Song, G.-L., Zheng, D. Corrosion Sci. 2019, 150, 161–174. https://doi.org/10.1016/j.corsci.2019.01.042.Suche in Google Scholar
25. Cao, F., Shi, Z., Song, G.-L., Liu, M., Dargusch, M. S., Atrens, A.. Corrosion Sci. 2015, 94, 255–269 https://doi.org/10.1016/j.corsci.2015.02.002.Suche in Google Scholar
26. Brady, M. P., Rother, G., Anovitz, L. M., Littrell, K. C., Unocic, K. A., Elsentriecy, H. H., Song, G. L., Thomson, J. K., Gallego, N. C., Davis, B. J. Electrochem. Soc. 2015, 162, C140–C149. https://doi.org/10.1149/2.0171504jes.Suche in Google Scholar
27. Zhang, B., Wang, J., Wu, B., Guo, X. W., Wang, Y. J., Chen, D., Zhang, Y. C., Du, K., Oguzie, E. E., Ma, X. L. Nat. Commun. 2018, 9, 2559. https://doi.org/10.1038/s41467-018-04942-x.Suche in Google Scholar PubMed PubMed Central
28. Song, G., StJohn, D. Corrosion Sci. 2004, 46, 1381–1399. https://doi.org/10.1016/j.corsci.2003.10.008.Suche in Google Scholar
29. Cain, T. W., Gonzalez-Afanador, I., Birbilis, N., Scully, J. R. J. Electrochem. Soc. 2017, 164, C300–C311. https://doi.org/10.1149/2.1371706jes.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- Preface of the issue of the 19th national symposium on phase diagram and materials design
- Review
- Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
- Original Papers
- Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
- Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
- Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
- Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
- Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
- Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
- Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
- Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
- Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
- Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
- Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
- Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
- Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
- Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
- Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
- The influence of SrCl2 on the corrosion behavior of magnesium
- Retraction
- Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Editorial
- Preface of the issue of the 19th national symposium on phase diagram and materials design
- Review
- Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
- Original Papers
- Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
- Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
- Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
- Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
- Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
- Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
- Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
- Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
- Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
- Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
- Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
- Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
- Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
- Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
- Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
- The influence of SrCl2 on the corrosion behavior of magnesium
- Retraction
- Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
- News
- DGM – Deutsche Gesellschaft für Materialkunde