Abstract
The complete isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C were constructed, in which the phase constituents and compositions of alloy samples were determined by scanning electron microscopy with energy dispersive X-ray spectroscopy, and X-ray diffraction. Nine three-phase regions at 950 °C and nine three-phase regions at 1100 °C were confirmed. Four three-phase regions at 950 °C and five three-phase regions at 1100 °C were proposed. The solid solubilities of third components in the binary compounds were determined. A new ternary compound τ with Hf2Rh structure was found.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The work was supported by National Natural Science Foundation of China (NSFC) (Grant No.51771021) and National Science and Technology Major Project (2017-VI-0002-0072).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Zhong, Z., Gu, Y., Yuan, Y., Yokokawa, T., Harada, H. Mater. Sci. Eng., A 2012, 552, 434. https://doi.org/10.1016/j.msea.2012.05.067.Search in Google Scholar
2. Antonov, S., Huo, J., Feng, Q., Isheim, D., Seidman, D. N., Helmink, R. C., Sun, E., Tin, S. Mater. Sci. Eng., A 2017, 687, 232. https://doi.org/10.1016/j.msea.2017.01.064.Search in Google Scholar
3. Montakhab, M., Balikci, E. Metall. Mater. Trans. A 2019, 50A, 3330. https://doi.org/10.1007/s11661-019-05252-7.Search in Google Scholar
4. Ling, L.-S.-B., Yin, Z., Hu, Z., Wang, J., Sun, B.-D. Materials 2019, 12, 3979. https://doi.org/10.3390/ma12233979.Search in Google Scholar PubMed PubMed Central
5. Zhang, C., Yu, L., Wang, H. Materials 2019, 12, 2096. https://doi.org/10.3390/ma12132096.Search in Google Scholar PubMed PubMed Central
6. Ling, L.-S.-B., Yin, Z., Hu, Z., Liang, J.-H., Wang, Z.-Y., Wang, J., Sun, B.-D. Materials 2020, 13, 151. https://doi.org/10.3390/ma13010151.Search in Google Scholar PubMed PubMed Central
7. Weng, F., Yu, H., Chen, C., Wan, K. Mater. Manuf. Process. 2015, 30, 1364. https://doi.org/10.1080/10426914.2015.1037906.Search in Google Scholar
8. Weng, F., Yu, H., Chen, C., Wan, K. Surf. Interface Anal. 2015, 47, 362. https://doi.org/10.1002/sia.5718.Search in Google Scholar
9. Christofidou, K. A., Hardy, M. C., Li, H.-Y., Argyrakis, C., Kitaguchi, H., Jones, N. G., Mignanelli, P. M., Wilson, A. S., Messe, O. M. D. M., Pickering, E. J., Gilbert, R. J., Rae, C. M. F., Yu, S., Evans, A., Child, D., Bowen, P., Stone, H. J. Metall. Mater. Trans. A 2018, 49A, 3896. https://doi.org/10.1007/s11661-018-4682-4.Search in Google Scholar
10. Hou, J. S., Guo, J. T., Wu, Y. X., Zhou, L. Z., Ye, H. Q. Mater. Sci. Eng., A 2010, 527, 1548. https://doi.org/10.1016/j.msea.2009.11.008.Search in Google Scholar
11. Shi, F., Xiao, H. Int. J. Hydrogen Energy 2013, 38, 2318. https://doi.org/10.1016/j.ijhydene.2012.11.094.Search in Google Scholar
12. Shi, F., Wang, X. Int. J. Hydrogen Energy 2021, 46, 1330. https://doi.org/10.1016/j.ijhydene.2020.05.007.Search in Google Scholar
13. Shi, F., Song, X. J. Alloys Compd. 2011, 509, L134. https://doi.org/10.1016/j.jallcom.2010.12.072.Search in Google Scholar
14. Taylor, A., Doyle, N. J. J. Less Common. Met. 1964, 7, 37. https://doi.org/10.1016/0022-5088(64)90016-5.Search in Google Scholar
15. Tylkina, M. A., Tsyganova, I. A., Savitskii, E. M. Russ. J. Inorg. Chem. 1964, 9, 893.Search in Google Scholar
16. Alekseyenko, G. K., Aleksandrova, L. N. Russ. Metall. 1969, 3, 131.Search in Google Scholar
17. Carpenter, R. W., Liu, C. T., Mardon, P. G. Metall. Trans. A 1971, 2, 125. https://doi.org/10.1007/BF02662647.Search in Google Scholar
18. Jackson, W. A., Perkins, A. J., Hehemann, R. F. Metall. Trans. A 1970, 1, 2014. https://doi.org/10.1007/BF02642807.Search in Google Scholar
19. Okamoto, H. J. Phase Equil. 1991, 12, 211. https://doi.org/10.1007/BF02645719.Search in Google Scholar
20. Aldinger, F., Guillermet, A. F., Iorich, V. S., Kaufman, L., Oates, W. A., Ohtani, H., Rand, M., Schalin, M. Calphad 1995, 19, 555. https://doi.org/10.1016/0364-5916(96)00007-7.Search in Google Scholar
21. Guillermet, A. F. J. Alloys Compd. 1996, 234, 111. https://doi.org/10.1016/0925-8388(95)01973-1.Search in Google Scholar
22. Ghosh, G., van de Walle, A., Asta, M., Olson, G. B. Calphad 2002, 26, 491. https://doi.org/10.1016/S0364-5916(02)80003-7.Search in Google Scholar
23. Dreval, L. MSI Eureka; MSI, Materials Science International: Stuttgart, 2017. Doc. ID. 20.16047.1.9.10.7121/msi-eureka-20.16047.1.9Search in Google Scholar
24. Nash, P., Nash, A. Bull. Alloy Phase Diagrams 1983, 4, 250. https://doi.org/10.1007/BF02868664.Search in Google Scholar
25. Svechnikov, V. N., Shurin, A. K., Dmitriyeva, G. P. Russ. Metall. 1967, 6, 95.Search in Google Scholar
26. Bsenko, L. J. Less Common. Met. 1979, 63, 171. https://doi.org/10.1016/0022-5088(79)90241-8.Search in Google Scholar
27. Zeng, K., Jin, Z. J. Less Common. Met. 1990, 166, 21. https://doi.org/10.1016/0022-5088(90)90362-N.Search in Google Scholar
28. Yeremenko, V. N., Semenova, E. L., Tretyachenko, L. A., Petyukh, V. M. J. Alloys Compd. 1993, 191, 117. https://doi.org/10.1016/0925-8388(93)90281-Q.Search in Google Scholar
29. Semenova, E. L. Powder Metall. Met. Ceram. 2001, 40, 414. https://doi.org/10.1023/A:1013783207331.10.1023/A:1013783207331Search in Google Scholar
30. Okamoto, H. J. Phase Equil. 1993, 14, 769. https://doi.org/10.1007/BF02667895.Search in Google Scholar
31. Hajjaji, M. J. Alloys Compd. 1998, 274, 185. https://doi.org/10.1016/S0925-8388(98)00356-9.Search in Google Scholar
32. Hajjaji, M. J. Alloys Compd. 1998, 274, 189. https://doi.org/10.1016/S0925-8388(98)00531-3.Search in Google Scholar
33. Umićević, A., Mahnke, H.-E., Cekić, B., Grbović, J., Koteski, V. J. Belošević-Čavor: Mater. Sci. Forum 2006, 518, 325. https://doi.org/10.4028/www.scientific.net/MSF.518.325.10.4028/www.scientific.net/MSF.518.325Search in Google Scholar
34. Wang, T., Jin, Z., Zhao, J.-C. Z. Metallkd. 2001, 92, 441.Search in Google Scholar
35. Turchanin, M., Agraval, P., Kolchugina, N., Smagulov, D. MSI Eureka; MSI, Materials Science International Services GmbH: Stuttgart, 2013. Doc. ID. 20.18963.1.4.10.7121/msi-eureka-20.18963.1.4Search in Google Scholar
36. Ross, A. J., Gheno, T., Ray, P. K., Kramer, M. J., Liu, X. L., Lindwall, G., Zhou, B., Shang, S. L., Gleeson, B., Liu, Z-K. Thermochim. Acta 2018, 668, 142. https://doi.org/10.1016/j.tca.2018.08.011.Search in Google Scholar
37. Shi, J., Guo, C., Li, C., Du, Z. Metall. Mater. Trans. A 2021, 52A, 1059. https://doi.org/10.1007/s11661-020-06120-5.Search in Google Scholar
38. Grube, G., Kubaschewski, O., Zwiauer, K. Z. Elektrochem. 1939, 45, 881.10.1002/bbpc.19390451206Search in Google Scholar
39. Pogodin, S. A., Selikmann, A. N., Dokl, C. R. Acad. Sci. USSR 1941, 31, 895.Search in Google Scholar
40. Duerden, I. J., Hume-Rothery, W. J. Less Common. Met. 1966, 11, 381. https://doi.org/10.1016/0022-5088(66)90083-X.10.1016/0022-5088(66)90083-XSearch in Google Scholar
41. van der Wekken, C. J., Taggart, R., Polonis, D. H. Met. Sci. J. 1971, 5, 219. https://doi.org/10.1179/030634571790439487.Search in Google Scholar
42. Muramatsu, Y., Roux, F., Vignes, A. Trans. Jpn. Inst. Met. 1975, 16, 61.10.2320/matertrans1960.16.61Search in Google Scholar
43. Sprengel, W., Denkinger, M., Mehrer, H. Intermetallics 1994, 2, 127. https://doi.org/10.1016/0966-9795(94)90007-8.Search in Google Scholar
44. Joubert, J.-M., Feutelais, Y. Calphad 2002, 26, 427. https://doi.org/10.1016/S0364-5916(02)00055-X.Search in Google Scholar
45. Chen, H., Du, Y., Xu, H., Liu, Y., Schuster, J. C. J. Mater. Sci. 2005, 40, 6019. https://doi.org/10.1007/s10853-005-4553-4.Search in Google Scholar
46. Kaufman, L., Nesor, H. Calphad 1978, 2, 81. https://doi.org/10.1016/0364-5916(78)90006-8.Search in Google Scholar
47. Zeng, K., Zeng, X., Jin, Z. J. Alloys Compd. 1992, 179, 177. https://doi.org/10.1016/0925-8388(92)90217-W.Search in Google Scholar
48. Zeng, K., Jin, Z. Scripta Metall. Mater. 1992, 26, 417. https://doi.org/10.1016/0956-716X(92)90622-L.Search in Google Scholar
49. Bolcavage, A., Kattner, U. R. J. Phase Equil. 1996, 17, 92. https://doi.org/10.1007/BF02665782.Search in Google Scholar
50. Joubert, J.-M., Sundman, B., Dupin, N. Calphad 2004, 28, 299. https://doi.org/10.1016/j.calphad.2004.09.004.Search in Google Scholar
51. Chen, H., Du, Y. Calphad 2006, 30, 308. https://doi.org/10.1016/j.calphad.2006.02.005.Search in Google Scholar
52. Okamoto, H. J. Phase Equil. 2008, 29, 210. https://doi.org/10.1007/s11669-008-9277-0.Search in Google Scholar
53. Cornish, L., Fabuyide, A., Peng, J., Pisch, A. MSI Eureka; MSI, Materials Science International Services GmbH: Stuttgart, 2019. Doc. ID. 20.23791.2.3.10.7121/msi-eureka-20.23791.2.3Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Preface of the issue of the 19th national symposium on phase diagram and materials design
- Review
- Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
- Original Papers
- Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
- Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
- Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
- Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
- Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
- Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
- Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
- Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
- Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
- Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
- Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
- Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
- Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
- Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
- Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
- The influence of SrCl2 on the corrosion behavior of magnesium
- Retraction
- Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- Preface of the issue of the 19th national symposium on phase diagram and materials design
- Review
- Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
- Original Papers
- Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
- Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
- Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
- Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
- Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
- Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
- Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
- Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
- Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
- Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
- Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
- Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
- Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
- Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
- Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
- The influence of SrCl2 on the corrosion behavior of magnesium
- Retraction
- Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
- News
- DGM – Deutsche Gesellschaft für Materialkunde