Home Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
Article
Licensed
Unlicensed Requires Authentication

Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys

  • Zunhong Wen , Yanglin Wang , Cong Wang , Min Jiang ORCID logo EMAIL logo , Hongxiao Li , Yuping Ren and Gaowu Qin
Published/Copyright: April 13, 2022
Become an author with De Gruyter Brill

Abstract

Fe–Pt intermetallic nanocrystals exhibit good chemical stability and unique magnetic and catalytic properties. However, there are still some discrepancies with regard to the order–disorder transitions of Fe–Pt phases, and experimental works reported for the phase equilibria of Fe–Pt alloys at low temperatures are scarce. Therefore, in this work, the phase equilibria and phase transformations of Fe–Pt alloys were systematically studied by using the diffusion couple technique combined with key alloys through electron probe microanalysis, X-ray diffraction and differential scanning calorimetry. As a result, the composition ranges of the ordered L12-Fe3Pt, L10-FePt and L12-FePt3 phases, especially at low temperatures, have been well determined, and the related invariant reactions have been evaluated. Finally, a revised Fe–Pt phase diagram has been proposed.


Corresponding author: Min Jiang, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Wenhua Road 3-11, Heping District, Shenyang, 110819, P.R. China, and Research Center for Metallic Wires, Northeastern University, Shenyang, P.R. China, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was financially supported by the Major Scientific and Technological Projects in Yunnan Province (No. 202002AB080001-1) and the National Natural Science Foundation of China (Nos. U1602275 and 51971059).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Guo, S. J., Sun, S. H. J. Am. Chem. Soc. 2012, 134, 2492. https://doi.org/10.1021/ja2104334.Search in Google Scholar PubMed

2. Chen, W. L., Gao, W. P., Tu, P., Robert, T., Ma, Y. L., Shan, H., Gu, X., Shang, W., Tao, P., Song, C. Y., Deng, T., Zhu, H., Pan, X. Q., Yang, H., Wu, J. B. Nano Lett. 2018, 18, 5905. https://doi.org/10.1021/acs.nanolett.8b02606.Search in Google Scholar PubMed

3. Kim, J., Lee, Y., Sun, S. H. J. Am. Chem. Soc. 2010, 132, 4996. https://doi.org/10.1021/ja1009629.Search in Google Scholar PubMed

4. Li, Q., Wu, L. H., Wu, G., Su, D., Lv, H. F., Zhang, S., Zhu, W. L., Casimir, A., Zhu, H. Y., Mendoza-Garcia, A., Sun, S. H. Nano Lett. 2015, 15, 2468. https://doi.org/10.1021/acs.nanolett.5b00320.Search in Google Scholar PubMed

5. Li, J. R., Xi, Z., Pan, Y. T., Spendelow, J. S., Duchesne, P. N., Su, D., Li, Q., Yu, C., Yin, Z. Y., Shen, B., Kim, Y. S., Zhang, P., Sun, S. H. J. Am. Chem. Soc. 2018, 140, 2926. https://doi.org/10.1021/jacs.7b12829.Search in Google Scholar PubMed

6. Yoo, T. Y., Yoo, J. M., Sinha, A. K., Bootharaju, M. S., Jung, E., Lee, H. S., Lee, B. H., Kim, J., Antink, W. H., Kim, Y. M., Lee, J., Lee, E., Lee, D. W., Cho, S. P., Yoo, S. J., Sung, Y. E., Hyeon, T. J. Am. Chem. Soc. 2020, 142, 14190. https://doi.org/10.1021/jacs.0c05140.Search in Google Scholar PubMed

7. Sun, S. H., Murray, C. B., Weller, D., Folks, L., Moser, A. Science 2000, 287, 1989. https://doi.org/10.1126/science.287.5460.1989.Search in Google Scholar PubMed

8. Yamamoto, S., Morimoto, Y., Ono, T., Takano, M. Appl. Phys. Lett. 2005, 87, 032503. https://doi.org/10.1063/1.1995959.Search in Google Scholar

9. Rong, C. B., Li, D., Nandwana, V., Poudyal, N., Ding, Y., Wang, Z. L., Zeng, H., Liu, J. P. Adv. Mater. 2006, 18, 2984. https://doi.org/10.1002/adma.200601904.Search in Google Scholar

10. Breitling, A., Goll, D. J. Magn. Magn. Mater. 2008, 320, 1449. https://doi.org/10.1016/j.jmmm.2007.12.003.Search in Google Scholar

11. Dai, Z. R., Sun, S. H., Wang, Z. L. Nano Lett. 2001, 1, 443. https://doi.org/10.1021/nl0100421.Search in Google Scholar

12. Elkins, K. E., Vedantam, T. S., Liu, J. P., Zeng, H., Sun, S. H., Ding, Y., Wang, Z. L. Nano Lett. 2003, 3, 1647. https://doi.org/10.1021/nl034734w.Search in Google Scholar

13. Isaac, E., Tammann, G. Z. Anorg. Chem. 1907, 55, 63. https://doi.org/10.1002/zaac.19070550105.Search in Google Scholar

14. Martelly, J. Ann. Phys. 1938, 11, 318. https://doi.org/10.1051/anphys/193811090318.Search in Google Scholar

15. Buckley, R. A., Hume-Rothery, W. J. Iron Steel Inst. 1959, 193, 61.Search in Google Scholar

16. Crangle, J., Shaw, J. A. Philos. Mag. 1962, 7, 207. https://doi.org/10.1080/14786436208211855.Search in Google Scholar

17. Chang, H., Sastri, S. Metall. Mater. Trans. A. 1980, 11, 194. https://doi.org/10.1007/BF02700457.Search in Google Scholar

18. Okamoto, H. Phase Diagrams of Binary Iron Alloys; Okamoto, H., Eds. ASM International: Materials Park, OH, 1993; p 330.Search in Google Scholar

19. Fredriksson, P., Sundman, B. Calphad 2001, 25, 535. https://doi.org/10.1016/S0364-5916(02)00006-8.Search in Google Scholar

20. Kusoffsky, A., Dupin, N., Sundman, B. Calphad 2001, 25, 549. https://doi.org/10.1016/S0364-5916(02)00007-X.Search in Google Scholar

21. Osaka, K., Sakaki, D., Takama, T. Jpn. J. Appl. Phys. 2002, 41, L155. https://doi.org/10.1143/JJAP.41.L155.Search in Google Scholar

22. Nosé, Y., Kushida, A., Ikeda, T., Nakajima, H., Tanaka, K., Numakura, H. Mater. Trans. 2003, 44, 2723. https://doi.org/10.2320/matertrans.44.2723.Search in Google Scholar

23. Okamoto, H. J Phase Equilibria Diffus. 2004, 25, 395. https://doi.org/10.1361/15477030420241.Search in Google Scholar

24. Fredriksson, P. Scand. J. Metall. 2004, 33, 183. https://doi.org/10.1111/j.1600-0692.2004.00682.x.Search in Google Scholar

25. Xu, X. N. Thermodynamics, Synthesis and Catalytic Properties of Au-based binary Nanoparticles. Ph.D. Thesis, Northeastern University, China, 2013.Search in Google Scholar

26. Kodentsov, A. A., Bastin, G. F., van-Loo, F. J. J. J. Alloys Compd. 2001, 320, 207. https://doi.org/10.1016/S0925-8388(00)01487-0.Search in Google Scholar

27. Zhao, J. C. J. Mater. Sci. 2004, 39, 3913. https://doi.org/10.1023/B:JMSC.0000031472.25241.c5.10.1023/B:JMSC.0000031472.25241.c5Search in Google Scholar

28. Kainuma, R., Ohnuma, I., Ishida, K. Methods for Phase Diagram Determination, Zhao, J. C., Eds. Elsevier Science Ltd, 2007, p 361. Chapter 11. https://doi.org/10.1016/B978-008044629-5/50011-2.Search in Google Scholar

29. Kodentsov, A. A., Bastin, G. F., van Loo, F. J. Methods for Phase Diagram Determination, Zhao, J. C., Eds. Elsevier Science Ltd, 2007, p 222. Chapter 6. https://doi.org/10.1016/B978-008044629-5/50006-9.Search in Google Scholar

30. Zhao, J. C. Methods for Phase Diagram Determination, Zhao, J. C., Eds. Elsevier Science Ltd, 2007, p 246. Chapter 7. https://doi.org/10.1016/B978-008044629-5/50007-0.Search in Google Scholar

31. Den Broeder, F. J. A. Thin Solid Films 1985, 124, 135. https://doi.org/10.1016/0040-6090(85)90256-1.Search in Google Scholar

32. Kasprzak, M., Baither, D., Schmitz, G. Acta Mater. 2011, 59, 1734. https://doi.org/10.1016/j.actamat.2010.11.040.Search in Google Scholar

33. Maresca, F., Curtin, W. A. Acta Mater. 2017, 134, 302. https://doi.org/10.1016/j.actamat.2017.05.044.Search in Google Scholar

34. Zhao, C., Zhang, C., Cao, W. Q., Yang, Z. G., Weng, Y. Q. Metall. Mater. Trans. A. 2015, 46, 3789. https://doi.org/10.1007/s11661-015-2991-4.Search in Google Scholar

35. Leroux, C., Loiseau, A., Broddin, D., Vantendeloo, G. Phil. Mag. B. 1991, 64, 1734. https://doi.org/10.1080/13642819108207603.Search in Google Scholar

36. Zhang, B., Lelovic, M., Soffa, W. A. Scripta Metall. Mater. 1991, 25, 1577. https://doi.org/10.1016/0956-716X(91)90455-A.Search in Google Scholar

37. Winn, H., Tanaka, Y., Shiraishi, T., Udoh, K., Miura, E., Hernandez, R. I., Takuma, Y., Hisatsune, K. J. Alloys Compd. 2000, 306, 262. https://doi.org/10.1016/S0925-8388(00)00791-X.Search in Google Scholar

38. Klay, E., Diologent, F., Mortensen, A. Acta Mater. 2011, 59, 3184. https://doi.org/10.1016/j.actamat.2011.01.058.Search in Google Scholar

Received: 2021-07-31
Revised: 2022-03-05
Accepted: 2021-11-24
Published Online: 2022-04-13
Published in Print: 2022-05-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Preface of the issue of the 19th national symposium on phase diagram and materials design
  4. Review
  5. Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
  6. Original Papers
  7. Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
  8. Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
  9. Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
  10. Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
  11. Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
  12. Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
  13. Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
  14. Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
  15. Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
  16. Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
  17. Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
  18. Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
  19. Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
  20. Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
  21. Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
  22. The influence of SrCl2 on the corrosion behavior of magnesium
  23. Retraction
  24. Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
  25. News
  26. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8496/html
Scroll to top button