Home Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
Article
Licensed
Unlicensed Requires Authentication

Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram

  • Junqin Li ORCID logo EMAIL logo , Fusheng Liu , Weiqin Ao , Lipeng Hu and Chaohua Zhang
Published/Copyright: April 21, 2022
Become an author with De Gruyter Brill

Abstract

Group IV–VI semiconductors, such as PbTe, GeTe and SnTe, are promising thermoelectric materials at intermediate temperatures, which have potential application in electrical generation from waste heat. A phase diagram plays an important role for designing a high-performance material. In this mini review, we present the enhancement of the thermoelectric properties of GeTe- and SnTe-based semiconductors based on their phase diagrams. The figure of merit ZT for the p-type GeTe–Ag8GeTe6 composites was enhanced by reducing the thermal conductivity significantly using the eutectic microstructures formed by the Ag8GeTe6 second phase and the GeTe matrix based on the GeTe–Ag8GeTe6 pseudo-binary system. The partial substitution of Te by Se in p-type GeTe extends the solid solubility of Pb in GeTe0.5Se0.5 up to 30 mol.%, which further improves the thermoelectric properties of alloys in the GeTe–PbTe–Se system by modifying the carrier concentration, leading to increasing the Seebeck coefficient and reducing thermal conductivity over a wide composition range. The Sn1−yMn y Te alloy with 10 at.% excess Mn keeps its composition change along the SnTe–MnTe tie line and receives higher solid solubility of MnTe in SnTe. It shows much higher thermoelectric performance since the excess Mn compensates the Mn lost during the preparation as compared to the Sn1−xMn x Te alloy without excess Mn.


Corresponding author: Junqin Li, College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, P. R. China, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bell, L. E. Science 2008, 321, 1457–1461. https://doi.org/10.1126/science.1158899.Search in Google Scholar PubMed

2. Snyder, G. J., Toberer, E. S. Nat. Mater. 2008, 7, 105–114. https://doi.org/10.1038/nmat2090.Search in Google Scholar PubMed

3. Shi, X. L., Zou, J., Chen, Z. G. Chem. Rev. 2020, 120, 7399–7515. https://doi.org/10.1021/acs.chemrev.0c00026.Search in Google Scholar PubMed

4. Zhu, T., Liu, Y., Fu, C., Heremans, J. P., Snyder, J. G., Zhao, X. Adv. Mater. 2017, 29, 1605884. https://doi.org/10.1002/adma.201605884.Search in Google Scholar PubMed

5. Biswas, K., He, J., Blum, I. D., Wu, C. I., Hogan, T. P., Seidman, D. N., Dravid, V. P., Kanatzidis, M. G. Nature 2012, 489, 414–418. https://doi.org/10.1038/nature11439.Search in Google Scholar PubMed

6. Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G. J. Science 2008, 321, 554–557. https://doi.org/10.1126/science.1159725.Search in Google Scholar PubMed

7. He, J., Girard, S. N., Kanatzidis, M. G., Dravid, V. P. Adv. Funct. Mater. 2010, 20, 764–772. https://doi.org/10.1002/adfm.200901905.Search in Google Scholar

8. Pei, Y., May, A. F., Snyder, G. J. Adv. Energy Mater. 2011, 1, 291–296. https://doi.org/10.1002/aenm.201000072.Search in Google Scholar

9. Hu, X., Jood, P., Ohta, M., Kunii, M., Nagase, K., Nishiate, H., Kanatzidis, M. G., Yamamoto, A. Energy Environ. Sci. 2016, 9, 517–529. https://doi.org/10.1039/c5ee02979a.Search in Google Scholar

10. Jood, P., Male, J. P., Anand, S., Matsushita, Y., Takagiwa, Y., Kanatzidis, M. G., Snyder, G. J., Ohta, M. J. Am. Chem. Soc. 2020, 142, 15464–15475. https://doi.org/10.1021/jacs.0c07067.Search in Google Scholar PubMed

11. Abdellaoui, L., Chen, Z. W., Yu, Y., Luo, T., Hanus, R., Schwarz, T., Villoro, R. B., Cojocaru-Miredin, O., Snyder, G. J., Raabe, D., Pei, Y. Z., Scheu, C., Zhang, S. Y. Adv. Funct. Mater. 2021, 31, 2101214. https://doi.org/10.1002/adfm.202101214.Search in Google Scholar

12. Hong, M., Zou, J., Chen, Z. G. Adv. Mater. 2019, 31, 1807071. https://doi.org/10.1002/adma.201807071.Search in Google Scholar PubMed

13. Wang, L., Li, J., Zhang, C., Ding, T., Xie, Y., Li, Y., Liu, F., Ao, W., Zhang, C. J. Mater. Chem. A 2020, 8, 1660–1667. https://doi.org/10.1039/c9ta11901a.Search in Google Scholar

14. Xing, T., Zhu, C., Song, Q., Huang, H., Xiao, J., Ren, D., Shi, M., Qiu, P., Shi, X., Xu, F., Chen, L. Adv. Mater. 2021, 33, 2008773. https://doi.org/10.1002/adma.202008773.Search in Google Scholar PubMed

15. Wang, L., Li, J., Xie, Y., Hu, L., Liu, F., Ao, W., Luo, J., Zhang, C. Mater. Today Phys. 2021, 16, 100308. https://doi.org/10.1016/j.mtphys.2020.100308.Search in Google Scholar

16. Gelbstein, Y., Dado, B., Ben-Yehuda, O., Sadia, Y., Dashevsky, Z., Dariel, M. P. Chem. Mater. 2010, 22, 1054–1058. https://doi.org/10.1021/cm902009t.Search in Google Scholar

17. Dou, Y., Li, J., Xie, Y., Wu, X., Hu, L., Liu, F., Ao, W., Liu, Y., Zhang, C. Mater. Today Phys. 2021, 20, 100497. https://doi.org/10.1016/j.mtphys.2021.100497.Search in Google Scholar

18. Bai, G., Yu, Y., Wu, X., Li, J., Xie, Y., Hu, L., Liu, F., Wuttig, M., Cojocaru-Mirédin, O., Zhang, C. Adv. Energy Mater. 2021, 11, 2102012. https://doi.org/10.1002/aenm.202102012.Search in Google Scholar

19. Xie, L., Chen, Y., Liu, R., Song, E., Xing, T., Deng, T., Song, Q., Liu, J., Zheng, R., Gao, X., Bai, S., Chen, L. Nano Energy 2020, 68, 104347. https://doi.org/10.1016/j.nanoen.2019.104347.Search in Google Scholar

20. Liu, W. D., Wang, D. Z., Liu, Q., Zhou, W., Shao, Z., Chen, Z. G. Adv. Energy Mater. 2020, 10, 2000367. https://doi.org/10.1002/aenm.202000367.Search in Google Scholar

21. Li, J., Zhang, X., Chen, Z., Lin, S., Li, W., Shen, J., Witting, I. T., Faghaninia, A., Chen, Y., Jain, A., Chen, L., Snyder, G. J., Pei, Y. Joule 2018, 2, 976–987. https://doi.org/10.1016/j.joule.2018.02.016.Search in Google Scholar

22. Li, P., Ding, T., Li, J., Zhang, C., Dou, Y., Li, Y., Hu, L., Liu, F., Zhang, C. Adv. Funct. Mater. 2020, 30, 1910059. https://doi.org/10.1002/adfm.201910059.Search in Google Scholar

23. Wu, D., Zhao, L. D., Hao, S., Jiang, Q., Zheng, F., Doak, J. W., Wu, H., Chi, H., Gelbstein, Y., Uher, C., Wolverton, C., Kanatzidis, M., He, J. J. Am. Chem. Soc. 2014, 136, 11412–11419. https://doi.org/10.1021/ja504896a.Search in Google Scholar PubMed

24. Dong, J. F., Sun, F. H., Tang, H. C., Pei, J., Zhuang, H. L., Hu, H. H., Zhang, B. P., Pan, Y., Li, J. F. Energy Environ. Sci. 2019, 12, 1396–1403. https://doi.org/10.1039/c9ee00317g.Search in Google Scholar

25. Zheng, L., Li, W., Lin, S., Li, J., Chen, Z., Pei, Y. ACS Energy Lett. 2017, 2, 563–568. https://doi.org/10.1021/acsenergylett.6b00671.Search in Google Scholar

26. Tang, J., Gao, B., Lin, S., Wang, X., Zhang, X., Xiong, F., Li, W., Chen, Y., Pei, Y. ACS Energy Lett. 2018, 3, 1969–1974. https://doi.org/10.1021/acsenergylett.8b01098.Search in Google Scholar

27. Hu, L., Zhang, Y., Wu, H., Li, J., Li, Y., McKenna, M., He, J., Liu, F., Pennycook, S. J., Zeng, X. Adv. Energy Mater. 2018, 8, 1802116. https://doi.org/10.1002/aenm.201802116.Search in Google Scholar

28. Guo, F., Cui, B., Liu, Y., Meng, X., Cao, J., Zhang, Y., He, R., Liu, W., Wu, H., Pennycook, S. J., Cai, W., Sui, J. Small 2018, 14, 1802615. https://doi.org/10.1002/smll.201802615.Search in Google Scholar PubMed

29. Zhao, L.-D., Tan, G., Hao, S., He, J., Pei, Y., Chi, H., Wang, H., Gong, S., Xu, H., Dravid, V. P., Uher, C., Snyder, G. J., Wolverton, C., Kanatzidis, M. G. Science 2016, 351, 141–144. https://doi.org/10.1126/science.aad3749.Search in Google Scholar PubMed

30. Ge, Z. H., Qiu, Y., Chen, Y. X., Chong, X., Feng, J., Liu, Z. K., He, J. Adv. Funct. Mater. 2019, 29, 1902893. https://doi.org/10.1002/adfm.201902893.Search in Google Scholar

31. Zhao, L. D., Lo, S. H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V. P., Kanatzidis, M. G. Nature 2014, 508, 373–377. https://doi.org/10.1038/nature13184.Search in Google Scholar PubMed

32. Feng, Y., Li, J., Li, Y., Ding, T., Zhang, C., Hu, L., Liu, F., Ao, W., Zhang, C. J. Mater. Chem. A 2020, 8, 11370–11380. https://doi.org/10.1039/d0ta02758h.Search in Google Scholar

33. Pei, Y., Wang, H., Snyder, G. J. Adv. Mater. 2012, 24, 6125–6135. https://doi.org/10.1002/adma.201202919.Search in Google Scholar PubMed

34. Tang, Y., Gibbs, Z. M., Agapito, L. A., Li, G., Kim, H. S., Nardelli, M. B., Curtarolo, S., Snyder, G. J. Nat. Mater. 2015, 14, 1223–1228. https://doi.org/10.1038/nmat4430.Search in Google Scholar PubMed

35. Heremans, J. P., Wiendlocha, B., Chamoire, A. M. Energy Environ. Sci. 2012, 5, 5510–5530. https://doi.org/10.1039/c1ee02612g.Search in Google Scholar

36. Vineis, C. J., Shakouri, A., Majumdar, A., Kanatzidis, M. G. Adv. Mater. 2010, 22, 3970–3980. https://doi.org/10.1002/adma.201000839.Search in Google Scholar PubMed

37. Kanatzidis, M. G. MRS Bull. 2015, 40, 687–695. https://doi.org/10.1557/mrs.2015.173.Search in Google Scholar

38. Minnich, A. J., Dresselhaus, M. S., Ren, Z. F., Chen, G. Energy Environ. Sci. 2009, 2, 466. https://doi.org/10.1039/b822664b.Search in Google Scholar

39. Lin, C.-h., Yen, W.-t., Tsai, Y.-f., Wu, H.-j. ACS Appl. Energy Mater. 2020, 3, 1311–1318. https://doi.org/10.1021/acsaem.9b02500.Search in Google Scholar

40. Cherniushok, O., Cardoso-Gil, R., Parashchuk, T., Grin, Y., Wojciechowski, K. T. Inorg. Chem. 2021, 60, 2771–2782. https://doi.org/10.1021/acs.inorgchem.0c03549.Search in Google Scholar PubMed

41. Li, X., Yang, P., Wang, Y., Zhang, Z., Qin, D., Xue, W., Chen, C., Huang, Y., Xie, X., Wang, X., Yang, M., Wang, C., Cao, F., Sui, J., Liu, X., Zhang, Q. Research 2020, 2020, 4630948. https://doi.org/10.34133/2020/4630948.10.34133/2020/4630948Search in Google Scholar PubMed PubMed Central

42. Tsai, Y. F., Wei, P. C., Chang, L., Wang, K. K., Yang, C. C., Lai, Y. C., Hsing, C. R., Wei, C. M., He, J., Snyder, G. J., Wu, H. J. Adv. Mater. 2021, 33, 2005612. https://doi.org/10.1002/adma.202005612.Search in Google Scholar PubMed

43. Li, J. Q., Li, L. F., Song, S. H., Liu, F. S., Ao, W. Q. J. Alloys Compd. 2013, 565, 144–147. https://doi.org/10.1016/j.jallcom.2013.02.149.Search in Google Scholar

44. Gelbstein, Y. Acta Mater. 2013, 61, 1499–1507. https://doi.org/10.1016/j.actamat.2012.11.027.Search in Google Scholar

45. Gorsse, S., Bauer Pereira, P., Decourt, R., Sellier, E. Chem. Mater. 2010, 22, 988–993. https://doi.org/10.1021/cm901862m.Search in Google Scholar

46. Li, S. P., Li, J. Q., Wang, Q. B., Wang, L., Liu, F. S., Ao, W. Q. Solid State Sci. 2011, 13, 399–403. https://doi.org/10.1016/j.solidstatesciences.2010.11.045.Search in Google Scholar

47. Li, J., Zhang, C., Deng, J., Liu, F., Ao, W., Li, Y., Zhang, C. J. Alloys Compd. 2018, 755, 184–191. https://doi.org/10.1016/j.jallcom.2018.04.317.Search in Google Scholar

48. Li, J. Q., Lu, Z. W., Wu, H. J., Li, H. T., Liu, F. S., Ao, W. Q., Luo, J., He, J. Q. Acta Mater. 2014, 74, 215–223. https://doi.org/10.1016/j.actamat.2014.04.036.Search in Google Scholar

49. Bauer Pereira, P., Sergueev, I., Gorsse, S., Dadda, J., Müller, E., Hermann, R. P. Phys. Status Solidi B 2013, 250, 1300–1307. https://doi.org/10.1002/pssb.201248412.Search in Google Scholar

50. Tsu, R., Howard, W. E., Esaki, L. Phys. Rev. 1968, 172, 779–788. https://doi.org/10.1103/physrev.172.779.Search in Google Scholar

51. Tung, Y. W., Cohen, M. L. Phys. Rev. 1969, 180, 823–826. https://doi.org/10.1103/physrev.180.823.Search in Google Scholar

52. Villars, P., Prince, A., Okamoto, H. Handbook of Ternary Alloy Phase Diagrams; ASM International: Materials Park, USA, 1995.Search in Google Scholar

53. Li, S. M., Li, J. Q., Yang, L., Liu, F. S., Ao, W. Q., Li, Y. Mater. Des. 2016, 108, 51–59. https://doi.org/10.1016/j.matdes.2016.06.084.Search in Google Scholar

54. Zhao, S. Y., Chen, R., Li, J. Q., Yang, L., Zhang, C. H., Li, Y., Liu, F. S., Ao, W. Q. J. Alloys Compd. 2019, 777, 1334–1339. https://doi.org/10.1016/j.jallcom.2018.11.051.Search in Google Scholar

55. Yang, J., Meisner, G. P., Chen, L. Appl. Phys. Lett. 2004, 85, 1140–1142. https://doi.org/10.1063/1.1783022.Search in Google Scholar

Received: 2021-06-11
Revised: 2022-03-05
Accepted: 2022-02-14
Published Online: 2022-04-21
Published in Print: 2022-05-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Preface of the issue of the 19th national symposium on phase diagram and materials design
  4. Review
  5. Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram
  6. Original Papers
  7. Diffusivities and atomic mobilities in the Ni-rich fcc Ni–Al–Cu alloys: experiment and modeling
  8. Composition-dependent interdiffusivity matrices of ordered bcc_B2 phase in ternary Ni–Al–Ru system at 1273∼1473 K
  9. Investigation of interdiffusion behavior in the Ti–Zr–Cu ternary system
  10. Measurement of the diffusion coefficient in Mg–Sn and Mg–Sc binary alloys
  11. Thermodynamic calculation of phase equilibria of rare earth metals with boron binary systems
  12. Thermodynamic modeling of the Bi–Ca and Bi–Zr systems
  13. Redetermination of the Fe–Pt phase diagram by using diffusion couple technique combined with key alloys
  14. Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system
  15. Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 °C
  16. Experimental investigation and thermodynamic assessment of the Al–Ca–Y ternary system
  17. Phase equilibria of the Ni–Cr–Y ternary system at 900 °C
  18. Phase constituents near the center of the Co–Cr–Fe–Ni–Ti system at 1000 °C
  19. Metastable phase diagram of the Gd2O3–SrO–CoO x ternary system
  20. Crystallization kinetic and dielectric properties of CaO–MgO–Al2O3–SiO2 glass/Al2O3 composites
  21. Investigation of the phase relation of the Bi2O3–Fe2O3–Nd2O3 system at 973 K and the microwave absorption performance of NdFeO3/Bi25FeO40 with different mass ratios
  22. The influence of SrCl2 on the corrosion behavior of magnesium
  23. Retraction
  24. Retraction of: Electrolytic synthesis of ZrSi/ZrC nanocomposites from ZrSiO4 and carbon black powder in molten salt
  25. News
  26. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8406/html
Scroll to top button