Startseite Magnetic relaxation in nanocrystalline systems: linking Monte Carlo steps with time
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Magnetic relaxation in nanocrystalline systems: linking Monte Carlo steps with time

  • P. Vargas EMAIL logo , M. Knobel und D. Altbir
Veröffentlicht/Copyright: 12. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The magnetic relaxation of a noninteracting two-dimensional ensemble of magnetic nanoparticles is simulated as a function of temperature using a Monte Carlo technique. By properly fitting the decay of magnetization using real parameters it is possible to make, at any finite temperature, a clear correspondence between Monte Carlo steps and time measured in seconds. The results allow one to visualize the intrinsic problems related to the simulation of nonequilibrium systems, and to understand the limits and range of validity of a particular system.


Prof. Patricio Vargas Department of Physics Universidad Técnica Fedrico Santa María Av. España 1680, Casilla 110V, Valparaíso, Chile Tel.: +56 32 654 555 Fax: +56 32 797 656

Dedicated to Professor Dr. Helmut Kronmüller on the occasion of his 70th birthday


  1. A bilateral project Vitae/Fundación Andes is acknowledged by the authors. In Chile the groups received financial support from FONDECYT under grants 7010127, 1990812, 1020071 and 1010127, and Millennium Science Nucleus “Condensed Matter Physics” P99-135F. In Brazil, the authors acknowledge the support from FAPESP and CNPq.

References

1 Néel, L.: Ann. Geophys. 5 (1949) 99.Suche in Google Scholar

2 Brown, W.F.: Phys. Rev. 130 (1963) 1677.10.1103/PhysRev.130.1677Suche in Google Scholar

3 Wernsdorfer, W.; Bonet Orozco, E.; Hasselbach, K.; Benoit, A.; Barabara, B.; Demoncy, N.; Loiseau, A.; Pascard, H.; Mailly, D.: Phys. Rev. Lett. 78 (1997) 1791.10.1103/PhysRevLett.78.1791Suche in Google Scholar

4 Igarashi, M.; Akagi, F.; Yoshida, K.; Nakatani, Y.: IEEE Trans. Magn. 36 (2000) 2459.10.1109/20.908465Suche in Google Scholar

5 Dormann, J.L.; Fiorani, D.; Tronc, E.: Adv. Chem. Phys. 98 (1997) 283.10.1002/9780470141571.ch4Suche in Google Scholar

6 Denardin, J.C.; Brandl, A.L.; Knobel, M.; Panissod, P.; Zhang, X.X.; Pakhomov, A.B.; Nie, H.: Phys. Rev. B 65 (2002) 064422.10.1103/PhysRevB.65.064422Suche in Google Scholar

7 Cregg, P.J.; Bessais, L.: J. Magn. Magn. Mater. 202 (1999) 554.10.1016/S0304-8853(99)00422-9Suche in Google Scholar

8 Respaud, M.: J. Appl. Phys. 86 (1999) 556.10.1063/1.370765Suche in Google Scholar

9 Pfannes, H.-D.; Mijovilovich, A.; Magalhães-Paniago, R; Paniago, R.: Phys. Rev. B 62 (2000) 3372.10.1103/PhysRevB.62.3372Suche in Google Scholar

10 Allia, P.; Coisson, M.; Knobel, M.; Tiberto, P.; Vinai, F.: Phys. Rev. B 60 (1999) 12207.10.1103/PhysRevB.60.12207Suche in Google Scholar

11 Andersson, J.-O.; Djuberg, C.; Jonsson, T.; Svedlindh, P.; Norblad, P.: Phys. Rev. B 56 (1997) 13983.10.1103/PhysRevB.56.13983Suche in Google Scholar

12 Allia, P.; Coisson, M.; Knobel, M.; Tiberto, P.; Vinai, F.; Novak, M.A.; Nunes, W.C.: Phys. Rev. B 64 (2001) 144420.10.1103/PhysRevB.64.144420Suche in Google Scholar

13 Chantrell, R.W.; Walmsley, N.; Gore, J.; Maylin, M.: Phys. Rev. B 63 (2001) 024410.10.1103/PhysRevB.63.024410Suche in Google Scholar

14 El-Hilo, M.; Chantrell, R.W.; O’Grady, K.: J. Appl. Phys. 84 (1998) 5114.10.1063/1.368761Suche in Google Scholar

15 Szabó, G.; Kádár, G.: Phys. Rev. B 58 (1998) 5584.10.1103/PhysRevB.58.5584Suche in Google Scholar

16 Kechrakos, D.; Trohidou, K.N.: J. Magn. Magn. Mater. 177–181 (1998) 943.10.1016/S0304-8853(97)00762-2Suche in Google Scholar

17 González, J.M.; Chubykalo, O.A.; Gonzáles, J.: Phys. Rev. B 55 (1997) 921.10.1103/PhysRevB.55.921Suche in Google Scholar

18 Iglesias, R.; Rubio, H.; Suárez, S.: Appl. Phys. Lett. 73 (1998) 2503.10.1063/1.122496Suche in Google Scholar

19 Knobel, M.; Ferrari, E.F.; da Silva, F.C.S.: Mater. Sci. Forum 302 – 303 (1999) 169.10.4028/www.scientific.net/MSF.302-303.169Suche in Google Scholar

20 Binder, K.; Hermann, D.W.: Montecarlo Simulation in Statistical Physics, Springer-Verlag, Berlin (1992).10.1007/978-3-662-30273-6Suche in Google Scholar

21 Russier, V.; Petit, C.; Legrand, L.; Pileni, M.P.: Phys. Rev. B 62 (2000) 3910.10.1103/PhysRevB.62.3910Suche in Google Scholar

22 Xu, C.; Li, Z.Y.; Hui, P.M.: J. Appl. Phys. 89 (2000) 3403.10.1063/1.1348326Suche in Google Scholar

23 Nowak, U.; Chantrell, R.W.; Kennedy, E.C.: Phys. Rev. Lett. 84 (2000) 163.10.1103/PhysRevLett.84.163Suche in Google Scholar PubMed

Received: 2002-04-23
Published Online: 2022-02-12

© 2002 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. Interplay between chemical and magnetic roughness of Pt in a Pt/Co bilayer investigated with X-ray resonant magnetic reflectometry
  6. Thermal stability and magnetic anisotropy dispersion in high-density hard-disk media
  7. Thickness dependence of magnetization structures in thin Permalloy rectangles
  8. Solving the selectivity problem in magnetic random access memories using configurations that form C-states
  9. Second-order magnetoelastic effects: From the Dirac equation to the magnetic properties of ultrathin epitaxial films for magnetic thin-film applications
  10. Magnetic relaxation in nanocrystalline systems: linking Monte Carlo steps with time
  11. Effect of domain size on the magneto-elastic damping in amorphous ferromagnetic metals
  12. The character and role of grain boundaries in NdFeB-type alloys and magnets
  13. Magnetic domain structure and spin reorientation process
  14. Magnetic properties of Tb(Fe, Mo)12 and Tb(Fe, Mo)12C compounds
  15. Microstructure, magnetic properties and magnetic hardening in 2 : 17 Sm–Co magnets
  16. Micromagnetism and microstructure – tailoring of high-performance permanent magnets
  17. Metastable alloys at moderate cooling rates
  18. Thermal critical phenomena and crossover between critical regimes in ferromagnets with long-range interactions
  19. Vacancies in thermal equilibrium and ferromagnetism near the Curie temperature
  20. The vortex lattice in superconductors
  21. Functional substrates – a novel approach to tailor transport properties and flux-line pinning in YBa2Cu3O7 – x thin films
  22. Superconducting permanent magnets and their application in magnetic levitation
  23. Magneto-optical studies of flux pinning in high-temperature superconductors
  24. Atomic transport in amorphous metals
  25. A novel technique for measuring diffusivities of short-lived radioisotopes in solids
  26. Hydrogen four-level tunnel systems in substitutional body-centred cubic alloys
  27. Magnetic relaxation phenomena in cobalt
  28. The Verwey transition in magnetite as studied by means of definite impurity doping
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Bücher/Books
  32. Conferences/Konferenzen
  33. DGM Training/DGM Fortbildung
Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2002-0169/html
Button zum nach oben scrollen