Startseite Technik Thickness dependence of magnetization structures in thin Permalloy rectangles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thickness dependence of magnetization structures in thin Permalloy rectangles

  • Riccardo Hertel EMAIL logo
Veröffentlicht/Copyright: 12. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Zero-field magnetization states in Permalloy thin-film elements of rectangular shape are calculated by means of finite element micromagnetic modeling. The energies of several possible magnetization patterns are determined for different sizes and thicknesses of the specimen. Based on these data, a phase diagram of the lowest-energy configuration is set up for rectangles of edge lengths between 250 and 1000 nm. It is shown that a thickness- and size-dependent transition from quasi-homogeneous single-domain states to demagnetized flux-closure patterns occurs in that range. The regime of sizes and thickness of the phase diagram in which the lowest-energy configuration of the thin-film element is a single-domain state is particularly important, since in this case the sample is expected to show good stability with respect to thermal demagnetization, which is a required criterion to make it suitable for technological applications in magneto-electronic devices.


Dr. R. Hertel MPI für Mikrostrukturphysik Weinberg 2, D-06120 Halle, Germany Tel.: +49 345 5582 592 Fax: +49 345 5511 223

Dedicated to Professor Dr. Helmut Kronmüller on the occasion of his 70th birthday


References

1 Zhu, L., Zheng, Y., Prinz, G.: J. Appl. Phys. 87 (2000) 6668.10.1063/1.372805Suche in Google Scholar

2 Kirk, K.J.; Chapman, J.N.; Wilkinson, C.D.W.: J. Appl. Phys. 85 (1999) 5237.10.1063/1.369955Suche in Google Scholar

3 Gomez, R.D.; Luu, T.; Pak, A.; Mayergoyz, I.; Kirk, K.; Chapman, J.: J. Appl. Phys. 85 (1999) 4598.10.1063/1.370420Suche in Google Scholar

4 Hubert, A.; Schäfer, R.: Magnetic Domains – The Analysis of Magnetic Microstructures, Springer, Berlin (1998).Suche in Google Scholar

5 Kronmüller, H.; Hertel, R.: J. Magn. Magn. Mater. 215 (2000) 11.10.1016/S0304-8853(00)00055-XSuche in Google Scholar

6 Rave, W.; Hubert, A.: IEEE Trans. Magn. 36 (2000) 3886.10.1109/20.914337Suche in Google Scholar

7 Van Den Berg, H.A.M.; Van Den Brandt, A.H.J.: J. Appl. Phys. 62 (1987) 1952.10.1063/1.339533Suche in Google Scholar

8 Brown, Jr., W.F.: Magnetostatic Principles in Ferromagnetism, NorthHolland, Amsterdam (1962).Suche in Google Scholar

9 Hertel, R.; Kronmüller, H.: J. Appl. Phys. 85 (1999) 6190.10.1063/1.370217Suche in Google Scholar

10 Zheng, Y.; Zhu, J.: J. Appl. Phys. 81 (1997) 4336.10.1063/1.364761Suche in Google Scholar

11 Hertel, R.; Kronmüller, H.: Physica B 275 (2000) 1.10.1016/S0921-4526(99)00685-7Suche in Google Scholar

12 Gadbois, J.; Zhu, J.G.; Vavra, W.; Hurst, A.: IEEE Trans. Magn. 34 (1998) 1066.10.1109/20.706358Suche in Google Scholar

13 Schrefl, T.; Fidler, J.; Kirk, K.J.; Chapman, J.N.: J. Magn. Magn. Mater. 175 (1997) 193.10.1016/S0304-8853(97)00156-XSuche in Google Scholar

14 Koch, R.H.; D.J.G., Abraham, W.; Trouilloud, P.; Altman, R.; Lu, Y.; Gallagher, W.J.; Parkin, S.: Phys. Rev. Lett. 81 (1998) 4512.10.1103/PhysRevLett.81.4512Suche in Google Scholar

15 Kronmüller, H.: Zeitschrift für Physik 168 (1962) 478.10.1007/BF01378144Suche in Google Scholar

16 Kronmüller, H.; Lambeck, M., in: L. Bergmann, U. Schaefer, Lehrbuch der Experimentalphysik, Vol. 6, W. de Gruyter, Berlin, New York (1992), pp. 715–791.Suche in Google Scholar

17 Hertel, R.; Kronmüller, H.: Phys. Rev. B 60 (1999) 7366.10.1103/PhysRevB.60.7366Suche in Google Scholar

18 Gimbutas, Z.; Garcia-Cervera, C.; Weinan, E.: submitted to J. Comp. Phys. (2001).Suche in Google Scholar

19 Schrefl, T.; Kronmüller, H.; Fidler, J.: J. Magn. Magn. Mater. 127 (1993) L273.10.1016/0304-8853(93)90042-ZSuche in Google Scholar

20 Fischer, R.; Kronmüller, H.: Phys. Rev. B 54 (1996) 7284.10.1103/PhysRevB.54.7284Suche in Google Scholar

21 Hertel, R.: Kronmüller, H.: IEEE Trans. Magn. 34 (1998) 3922.10.1109/20.728305Suche in Google Scholar

22 Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling,W.T.: Numerical Recipies: The art of scientific computing, Cambridge University Press, Cambrige, New York (1986).10.1016/S0003-2670(00)82860-3Suche in Google Scholar

23 Berkov, D.; Ramstöck, K.; Hubert, A.: Phys. Stat. Sol. (a) 137 (1993) 207.10.1002/pssa.2211370118Suche in Google Scholar

24 Fredkin, D.R.; Koehler, T.R.: IEEE Trans. Magn. 26, 415 (1990).10.1109/20.106342Suche in Google Scholar

25 Aharoni, A.: J. Appl. Phys. 83 (1998) 3432.10.1063/1.367113Suche in Google Scholar

26 Rave, W.; Fabian, K.; Hubert, A.: J. Magn. Magn. Mater. 190 (1998) 332.10.1016/S0304-8853(98)00328-XSuche in Google Scholar

27 McMichael, R.D.: Standard problem number 3, Problem specification and reported solutions, Micromagnetic Modeling Activity Group. http: //www.ctcms.nist.gov/~rdm/mumag.html (1998).Suche in Google Scholar

28 Hertel, R.; Kronmüller, H.: J. Magn. Magn. Mater. 238 (1999) 185.10.1016/S0304-8853(01)00876-9Suche in Google Scholar

29 Arrott, A.S.: private communication (2001).Suche in Google Scholar

Received: 2002-04-02
Published Online: 2022-02-12

© 2002 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. Interplay between chemical and magnetic roughness of Pt in a Pt/Co bilayer investigated with X-ray resonant magnetic reflectometry
  6. Thermal stability and magnetic anisotropy dispersion in high-density hard-disk media
  7. Thickness dependence of magnetization structures in thin Permalloy rectangles
  8. Solving the selectivity problem in magnetic random access memories using configurations that form C-states
  9. Second-order magnetoelastic effects: From the Dirac equation to the magnetic properties of ultrathin epitaxial films for magnetic thin-film applications
  10. Magnetic relaxation in nanocrystalline systems: linking Monte Carlo steps with time
  11. Effect of domain size on the magneto-elastic damping in amorphous ferromagnetic metals
  12. The character and role of grain boundaries in NdFeB-type alloys and magnets
  13. Magnetic domain structure and spin reorientation process
  14. Magnetic properties of Tb(Fe, Mo)12 and Tb(Fe, Mo)12C compounds
  15. Microstructure, magnetic properties and magnetic hardening in 2 : 17 Sm–Co magnets
  16. Micromagnetism and microstructure – tailoring of high-performance permanent magnets
  17. Metastable alloys at moderate cooling rates
  18. Thermal critical phenomena and crossover between critical regimes in ferromagnets with long-range interactions
  19. Vacancies in thermal equilibrium and ferromagnetism near the Curie temperature
  20. The vortex lattice in superconductors
  21. Functional substrates – a novel approach to tailor transport properties and flux-line pinning in YBa2Cu3O7 – x thin films
  22. Superconducting permanent magnets and their application in magnetic levitation
  23. Magneto-optical studies of flux pinning in high-temperature superconductors
  24. Atomic transport in amorphous metals
  25. A novel technique for measuring diffusivities of short-lived radioisotopes in solids
  26. Hydrogen four-level tunnel systems in substitutional body-centred cubic alloys
  27. Magnetic relaxation phenomena in cobalt
  28. The Verwey transition in magnetite as studied by means of definite impurity doping
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Bücher/Books
  32. Conferences/Konferenzen
  33. DGM Training/DGM Fortbildung
Heruntergeladen am 1.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2002-0166/html
Button zum nach oben scrollen