Home Atomic transport in amorphous metals
Article
Licensed
Unlicensed Requires Authentication

Atomic transport in amorphous metals

  • T. Egami EMAIL logo
Published/Copyright: February 12, 2022
Become an author with De Gruyter Brill

Abstract

A novel mechanism of atomic transport in amorphous metallic alloys, or metallic glasses, is proposed based upon the fluctuations in the local structure. The proposed mechanism is very different from those in crystalline solids and from the free volume model, and is characterized by the bond-exchange action triggered by the local topological instability of the atomic environment. The implications of this mechanism on the liquid fragility and bulk metallic glass formation are discussed.


Dedicated to Professor Dr. Helmut Kronmüller on the occasion of his 70th birthday



Prof. Takeshi Egami Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6272, USA Tel.: +1 215 898 5138 Fax: +1 215 573 2128

  1. It is a great pleasure to congratulate Professor Helmut Kronmüller for his 70th birthday, and to express my deep gratitude to him for his rich ideas, deep knowledge, overflowing enthusiasm, sagacious advises, great humor, warm and pleasant personality, and kind encouragements at many occasions over the three decades the author had a great fortune of being acquainted with him. This work was supported by the Defense Advanced Research Project Agency and the Office Naval Research through DARPA/ONR Grant N00014-01-1-0961 and through Boeing Co. Grant 44955-00-00.

References

1 Frank, W.; Horner, A.; Scharwaechter, P; Kronmüller, H.: Mater. Sci. Eng. A 179 (1994) 36.10.1016/0921-5093(94)90160-0Search in Google Scholar

2 Mossinger, J.; Horner, A.; Kronmüller, H.: phys. stat. solidi 166 (1998) 513.10.1002/(SICI)1521-396X(199803)166:1<513::AID-PSSA513>3.0.CO;2-2Search in Google Scholar

3 Ege, M.; Ulfert, W.; Kronmüller, H.: Z. Metallkd. 92 (2001) 690.10.1515/ijmr-2001-0131Search in Google Scholar

4 Cohen, M. H.; Turnbull, D.: J. Chem. Phys. 31 (1959) 1164.10.1063/1.1730566Search in Google Scholar

5 Turnbull, D.; Cohen, M.H.: J. Chem. Phys. 34 (1961) 120.10.1063/1.1731549Search in Google Scholar

6 Turnbull, D.; Cohen, M.H.: J. Chem. Phys. 52 (1970) 3038.10.1063/1.1673434Search in Google Scholar

7 Ehmler, H.; Heesemann, A.; Rätzke, K.; Faupel, F.; Geyer, U.: Phys. Rev. Lett. 80 (1998) 4919.10.1103/PhysRevLett.80.4919Search in Google Scholar

8 Schober, H.R.; Olingschleger, C.; Laird, B.B.: J. Non-Cryst. Solids 156 (1993) 965.10.1016/0022-3093(93)90106-8Search in Google Scholar

9 Schober, H.R.; Gaukel, C.; Oligschleger, C.: Prog. Theor. Phys. Suppl. 126 (1997) 67.10.1143/PTPS.126.67Search in Google Scholar

10 Oligschleger, C.; Schober, H.R.: Phys. Rev. B 59 (1999) 811.10.1103/PhysRevB.59.811Search in Google Scholar

11 Teichler, H.: J. Non-Cryst. Solids 293 (2001) 339.10.1016/S0022-3093(01)00684-6Search in Google Scholar

12 Faupel, F.; Frank, W.; Macht, M.-P.; Mehrer, H.; Naundorf, V.; Rätzke, K.; Schober, H.; Sharma, S. K.; Teichler, H.: To be published.Search in Google Scholar

13 Egami, T.; Waseda, Y.: J. Non-Crsyt. Solids 64 (1984) 113.10.1016/0022-3093(84)90210-2Search in Google Scholar

14 Egami, T.: Rep. Prog. Phys. 47 (1984) 1601.10.1088/0034-4885/47/12/002Search in Google Scholar

15 Egami, T.: Mater. Sci. Eng. A 226–228 (1997) 261.10.1016/S0921-5093(97)80041-XSearch in Google Scholar

16 Egami, T.: Mater. Trans. 43 (2002) 510.10.2320/matertrans.43.510Search in Google Scholar

17 Angell, C.A.: Science 267 (1995) 1924.10.1126/science.267.5206.1924Search in Google Scholar

18 Zallen, R.: The Physics of Amorphous Solids, Wiley, New York, (1983).10.1002/3527602798Search in Google Scholar

19 Suzuki, Y.; Egami, T.: J. Non-Cryst. Solids 75 (1985) 361.10.1016/0022-3093(85)90242-XSearch in Google Scholar

20 Suzuki, Y.; Haimovich, J.; Egami, T.: Phys. Rev. B 35 (1987) 2162.10.1103/PhysRevB.35.2162Search in Google Scholar

21 Egami, T.; Maeda, K.; Vitek, V.: Phil. Mag. A 41 (1980) 883.10.1080/01418618008243894Search in Google Scholar

22 Even at T = 0 quantum fluctuations produce stress fluctuations, which disappears only in time-average.Search in Google Scholar

23 Egami, T.; Srolovitz, D.J.: Phys. F 12 (1982) 2141; 13 (1983) 909 (Corrigendum).10.1088/0305-4608/12/10/010Search in Google Scholar

24 Chen, S.-P.; Egami, T.; Vitek, V.: Phys. Rev. B 37 (1987) 2440.10.1103/PhysRevB.37.2440Search in Google Scholar

25 Egami T.; Aur, S.: J. Non-Cryst. Solids 89 (1987) 60.10.1016/S0022-3093(87)80321-6Search in Google Scholar

26 Johnson, R.A.: Phys. Rev. A 134 (1964) 1329.10.1103/PhysRev.134.A1329Search in Google Scholar

27 Eshelby, J.D.: Proc. Roy. Soc. A 241 (1957) 376.10.1098/rspa.1957.0133Search in Google Scholar

28 Cohen M.H.; Grest, G.S.: Phys. Rev. B 20 (1979) 1077.10.1103/PhysRevB.20.1077Search in Google Scholar

29 Busch, R.; Masuhr, A.; Bakke E.; Johnson, W.L.: Mater. Sci. Forum 269 –272 (1998) 547.10.4028/www.scientific.net/MSF.269-272.547Search in Google Scholar

Received: 2002-05-26
Published Online: 2022-02-12

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. Interplay between chemical and magnetic roughness of Pt in a Pt/Co bilayer investigated with X-ray resonant magnetic reflectometry
  6. Thermal stability and magnetic anisotropy dispersion in high-density hard-disk media
  7. Thickness dependence of magnetization structures in thin Permalloy rectangles
  8. Solving the selectivity problem in magnetic random access memories using configurations that form C-states
  9. Second-order magnetoelastic effects: From the Dirac equation to the magnetic properties of ultrathin epitaxial films for magnetic thin-film applications
  10. Magnetic relaxation in nanocrystalline systems: linking Monte Carlo steps with time
  11. Effect of domain size on the magneto-elastic damping in amorphous ferromagnetic metals
  12. The character and role of grain boundaries in NdFeB-type alloys and magnets
  13. Magnetic domain structure and spin reorientation process
  14. Magnetic properties of Tb(Fe, Mo)12 and Tb(Fe, Mo)12C compounds
  15. Microstructure, magnetic properties and magnetic hardening in 2 : 17 Sm–Co magnets
  16. Micromagnetism and microstructure – tailoring of high-performance permanent magnets
  17. Metastable alloys at moderate cooling rates
  18. Thermal critical phenomena and crossover between critical regimes in ferromagnets with long-range interactions
  19. Vacancies in thermal equilibrium and ferromagnetism near the Curie temperature
  20. The vortex lattice in superconductors
  21. Functional substrates – a novel approach to tailor transport properties and flux-line pinning in YBa2Cu3O7 – x thin films
  22. Superconducting permanent magnets and their application in magnetic levitation
  23. Magneto-optical studies of flux pinning in high-temperature superconductors
  24. Atomic transport in amorphous metals
  25. A novel technique for measuring diffusivities of short-lived radioisotopes in solids
  26. Hydrogen four-level tunnel systems in substitutional body-centred cubic alloys
  27. Magnetic relaxation phenomena in cobalt
  28. The Verwey transition in magnetite as studied by means of definite impurity doping
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Bücher/Books
  32. Conferences/Konferenzen
  33. DGM Training/DGM Fortbildung
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2002-0183/html
Scroll to top button