Home Microstructure, magnetic properties and magnetic hardening in 2 : 17 Sm–Co magnets
Article
Licensed
Unlicensed Requires Authentication

Microstructure, magnetic properties and magnetic hardening in 2 : 17 Sm–Co magnets

  • W. Tang EMAIL logo , Y. Zhang and G. C. Hadjipanayis
Published/Copyright: February 12, 2022
Become an author with De Gruyter Brill

Abstract

A comprehensive and systematic study has been made on Sm(Co, Fe, M, L)z magnets (M = Cu or Ni, and L = Zr or Ti) to completely understand the effects of composition and processing on the microstructure and magnetic properties of magnets. Ti-containing magnets do not have a lamellar phase but exhibit only a cellular microstructure, resulting in a much lower coercivity (below 10 kOe). Ni-containing magnets exhibit a perfect cellular/lamellar microstructure, but without a large domain wall energy gradient at the interface of the 2 : 17 and 1 : 5 phases, leading to a low coercivity. Only in the magnets containing both Cu and Zr, a uniform and stable cellular/lamellar microstructure with a high domain wall energy gradient across the 1 : 5 phase is formed, resulting in high coercivity. These results indicate that the conditions for effective magnetic hardening are: (1) Formation of a cellular/lamellar microstructure, and (2) establishment of a domain wall energy gradient at the cell boundaries. Based on all of these experimental results, the magnetization reversal mechanism of 2 : 17 Sm–Co magnets can be explained by both the domain wall pinning and nucleation models. The nucleation mechanism holds at any temperature in the Cu-rich magnets, and only above the Curie temperature of the 1 : 5 phase in the alloys with the lower Cu content. In these cases, the 2 : 17 cells become magnetically decoupled.

Abstract

Sm(Co, Fe, M, L)z-Magnete (M = Cu oder Ni, L = Zr oder Ti) wurden detailliert und systematisch untersucht, um die Auswirkungen von Zusammensetzung und Herstellungsprozess solcher Magnete auf deren Gefüge und ihre magnetische Eigenschaften zu untersuchen. Magnete, die Ti enthalten, weisen keine lamellare Phase auf, sondern nur eine zellulare Mikrostruktur, und haben daher eine sehr kleine Koerzitivkraft (weniger als 10 kOe). Magnete mit Ni besitzen eine perfekte zelluläre Mikrostruktur, aber an den 2 : 17- und 1 : 5-Phasengrenzschichten ist der Gradient der Domänenwandenergie nicht sehr hoch, was ebenfalls zu einer niedrigen Koerzitivkraft führt. Eine gleichmäßige und stabile zelluläre/lamellare Mikrostruktur mit einem hohen Gradienten der Domänenwandenergie an der 1 : 5-Phasengrenzschicht hingegen führt zu einer großen Koerzitivkraft. Dies ist nur in Magneten, die sowohl Cu als auch Zr enthalten, der Fall. Die Ergebnisse lassen auf die folgenden Bedingungen für eine effektive magnetische Härtung schließen: (1) Bildung einer zellulären/lamellaren Mikrostruktur und (2) Ausbildung eines hohen Domänenwandenergie-Gradienten an der Zellwand. Durch die Resultate kann der Mechanismus der Ummagnetisierung eines 2 : 17-Sm–Co-Magneten durch Verankerung der Domänenwände und durch Keimbildung erklärt werden. In Cu-reichen Magneten tritt der Keimbildungsmechanismus im gesamten Temperaturbereich auf, in Magneten mit kleinerem Cu-Gehalt nur oberhalb der Curie-Temperatur der 1 : 5-Phase. In diesen Fällen sind die 2 : 17-Zellen magnetisch voneinander isoliert.


Dedicated to Professor Dr. Helmut Kronmüller on the occasion of his 70th birthday



Dr. Wei Tang Department of Physics & Astronomy University of Delaware Newark, DE 19716, USA Fax: +1 302 831 1637

The authors gratefully acknowledge the support of the MURI 96 programme and DARPA 2000 Met-Materials programme.

References

1 Ray, A.E.: J. Appl. Phys. 55 (1984) 2094.10.1063/1.333575Search in Google Scholar

2 Kumar, K.: J. Appl. Phys. 63 (1988) R13.10.1063/1.341084Search in Google Scholar

3 Fidler, J.; Skalicky, P.: J. Magn. Magn. Mater. 30 (1982) 58.10.1016/0304-8853(82)90010-5Search in Google Scholar

4 Mishra, R.K.; Thomas, G.; Yoneyama, T.; Fukino, A.; Ojima, T.: J. Appl. Phys.52 (1981) 2517.10.1063/1.328987Search in Google Scholar

5 Rabenberg, L.; Mishra, R.K.; Thomas, G.: J. Appl. Phys. 53 (1982) 2389.10.1063/1.330867Search in Google Scholar

6 Hadjipanayis, G.C.; Tang,W.; Zhang, Y. et al.: IEEE Trans. Magn. 36 (2000) 3382.10.1109/20.908808Search in Google Scholar

7 ang,W.; Zhang, Y.; Hadjipanayis, G.C.: J. Appl. Phys. 87 (2000) 5308.10.1063/1.373330Search in Google Scholar

8 Tang, W.; Zhang, Y.; Hadjipanayis, G.C.: J. Magn. Magn. Mater. 212 (2000) 138.10.1016/S0304-8853(99)00783-0Search in Google Scholar

9 Goll, D.; Sigle,W.; Hadjipanayis, G.C.; Kronmüller, H.: Mat. Res. Soc. Symp. 674 (2001) U241.10.1557/PROC-674-U2.4Search in Google Scholar

10 Scholz, W.; Filder, J.; Schrefl, T. et al.: J. Appl. Phys. 91 (2002) 8492.10.1063/1.1453326Search in Google Scholar

11 Goll, D.; Kleinschroth, I.; Sigle, W.; Kronmüller, H.: Appl. Phys. Lett. 76 (2000) 1054.10.1063/1.125936Search in Google Scholar

12 Tang, W.; Zhang, Y.; Hadjipanayis, G.C. et al.: Mat. Res. Soc. Symp. 674 (2001) U211.10.1557/PROC-674-U2.1Search in Google Scholar

13 Lectard, E.; Allibert, C.H.: J. Appl. Phys. 55 (1994) 6277.10.1063/1.355423Search in Google Scholar

14 Barbara, B.; Uehara, M.: IEEE Trans. Magn. 12 (1976) 997.10.1109/TMAG.1976.1059211Search in Google Scholar

15 Deryagin, A.V.: J. Physique 40 (1979) 165.10.1051/jphyslet:01979004007016500Search in Google Scholar

16 Ermolenko, A.S.: IEEE Trans. Magn. 12 (1976) 992.10.1109/TMAG.1976.1059178Search in Google Scholar

17 Livingston, J.D.: J. Appl. Phys. 46 (1975) 5259.10.1063/1.321595Search in Google Scholar

18 Kronmüller, H.: Durst, K.D.; Ervens, W.; Fernengel, F.: IEEE Trans. Magn. 20 (1984) 1569.10.1109/TMAG.1984.1063213Search in Google Scholar

Received: 2002-05-27
Published Online: 2022-02-12

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. Interplay between chemical and magnetic roughness of Pt in a Pt/Co bilayer investigated with X-ray resonant magnetic reflectometry
  6. Thermal stability and magnetic anisotropy dispersion in high-density hard-disk media
  7. Thickness dependence of magnetization structures in thin Permalloy rectangles
  8. Solving the selectivity problem in magnetic random access memories using configurations that form C-states
  9. Second-order magnetoelastic effects: From the Dirac equation to the magnetic properties of ultrathin epitaxial films for magnetic thin-film applications
  10. Magnetic relaxation in nanocrystalline systems: linking Monte Carlo steps with time
  11. Effect of domain size on the magneto-elastic damping in amorphous ferromagnetic metals
  12. The character and role of grain boundaries in NdFeB-type alloys and magnets
  13. Magnetic domain structure and spin reorientation process
  14. Magnetic properties of Tb(Fe, Mo)12 and Tb(Fe, Mo)12C compounds
  15. Microstructure, magnetic properties and magnetic hardening in 2 : 17 Sm–Co magnets
  16. Micromagnetism and microstructure – tailoring of high-performance permanent magnets
  17. Metastable alloys at moderate cooling rates
  18. Thermal critical phenomena and crossover between critical regimes in ferromagnets with long-range interactions
  19. Vacancies in thermal equilibrium and ferromagnetism near the Curie temperature
  20. The vortex lattice in superconductors
  21. Functional substrates – a novel approach to tailor transport properties and flux-line pinning in YBa2Cu3O7 – x thin films
  22. Superconducting permanent magnets and their application in magnetic levitation
  23. Magneto-optical studies of flux pinning in high-temperature superconductors
  24. Atomic transport in amorphous metals
  25. A novel technique for measuring diffusivities of short-lived radioisotopes in solids
  26. Hydrogen four-level tunnel systems in substitutional body-centred cubic alloys
  27. Magnetic relaxation phenomena in cobalt
  28. The Verwey transition in magnetite as studied by means of definite impurity doping
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Bücher/Books
  32. Conferences/Konferenzen
  33. DGM Training/DGM Fortbildung
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2002-0174/html
Scroll to top button