Home Technology The Verwey transition in magnetite as studied by means of definite impurity doping
Article
Licensed
Unlicensed Requires Authentication

The Verwey transition in magnetite as studied by means of definite impurity doping

  • F. Walzl EMAIL logo , J. H. V. J. Brabers and V. A. M. Brabers
Published/Copyright: February 12, 2022

Abstract

The effect of low-dose cation doping (0:005 < x < 0:08) of magnetite single crystals, Fe3–xMxO4 (M = Ni,Mg, Co, Al, Ti, Ga), has been studied by means of the magnetic after-effect (MAE) spectroscopy with respect to (i) the Verwey transition, (ii) the low-temperature (4 K < T < 125 K ≃ TV) charge transport mechanisms and (iii) the zero-crossing of the crystal anisotropy. The observed low-temperature shifting of the transition (TV) is in fair agreement with previous conductivity measurements. Variations of the MAE spectra clearly indicate the low-temperature tunnelling (4 K < T < 35 K) to be far more affected by smallest impurity doping than variable long-range hopping (50 K < T < 125 K) – this outstanding sensibility of the tunnelling processes against impurities or any other defects is also true when compared with the corresponding TV shifting. All samples undergo a doping-induced temperature splitting, ΔTVC, between the Verwey transition (spontaneous jump of the susceptibility at TV) and the zero-crossing of the crystal anisotropy (giving rise to a delayed susceptibility maximum) – in contrast to perfectly stoichiometric Fe3O4 single crystals where both effects are coincident. This range of temperature-splitting ΔTVC, found to be extremely large in the case of Co2+ doping, is characterized by destabilized magnetic domain structures due to locally disordered anisotropy distribution in the lattice.


Dedicated to Professor Dr. Helmut Kronmüller on the occasion of his 70th birthday



Prof. Dr. F. Walz Max-Planck-Institut für Metallforschung Heisenbergstr. 3, D-70569 Stuttgart, Germany Tel.: +49 711 689 1817Fax: +49 711 689 1010

  1. The authors are very grateful to Prof. Dr. H. Kronmüller for numerous fruitful and stimulating discussions over the course of many years. They highly appreciate the technical assistance of Mrs. Th. Dragon and Mrs. I. Schofron in the preparation of this manuscript.

References

1 Walz, F.: J. Phys.: Condens. Matter 14 (2002) R285.10.1088/0953-8984/14/12/203Search in Google Scholar

2 Verwey, E.J.W.; Haayman, P.W.: Physica 8 (1941) 979.10.1016/S0031-8914(41)80005-6Search in Google Scholar

3 Verwey, E.J.W.; Haayman, P.W.; Romeijn, C.W.: J. Chem. Phys.15 (1947) 181.10.1063/1.1746466Search in Google Scholar

4 Mott, N.F.: Metal-Insulator Transitions, Taylor & Francis, London (1974, 1st ed.); (1990, 2nd ed.).10.1016/0022-4596(90)90201-8Search in Google Scholar

5 Anderson, P.W.: Phys. Rev. 102 (1956) 1008.10.1103/PhysRev.102.1008Search in Google Scholar

6 Cullen, J.R.; Callen, E.R.: Phys. Rev. B 7 (1973) 397.10.1103/PhysRevB.7.397Search in Google Scholar

7 Ihle, D.; Lorenz, B.: Phil. Mag. 42 (1980) 337.10.1080/01418638008221875Search in Google Scholar

8 Kita, E.; Siratori, K.; Kohn, K.; Tasaki, A.; Kimura, S.; Shindo, I.: J. Phys. Soc. Jpn. 47 (1979) 1788.10.1143/JPSJ.47.1788Search in Google Scholar

9 Umemura, S.; Iida, S.: J. Phys. Soc. Jpn. 40 (1976) 679; Matsui, M.; Todo, S.; Chikazumi, S.: ibid. 42 (1977) 47.10.1143/JPSJ.40.679Search in Google Scholar

10 Kakol, Z.; Honig, J.: Phys. Rev. B 40 (1989) 9090.10.1103/PhysRevB.40.9090Search in Google Scholar

11 Honig, J.: J. Alloys Comp. 229 (1995) 24.10.1016/0925-8388(95)01677-5Search in Google Scholar

12 Brabers, V.A.M.; Walz, F.; Kronmüller, H.: Phys. Rev. B 58 (1998) 14163.10.1103/PhysRevB.58.14163Search in Google Scholar

13 Brabers, V.A.M.; Brabers, J.H.V.J.; Walz, F.; Kronmüller, H., in: M. Abe, Y. Yamazaki (eds.), Proc. 8th Int. Conf. on Ferrites, Kyoto, Jpn. Soc. of Powder and Powder Metallurgy (2000) 123.Search in Google Scholar

14 Kakol, Z.; Koszlowski, A.: Solid State Sci. 2 (2000) 737.10.1016/S1293-2558(00)01083-9Search in Google Scholar

15 Brabers, J.H.V.J.;Walz, F.; Kronmüller, H.: Physica B 266 (1999) 321.10.1016/S0921-4526(99)00065-4Search in Google Scholar

16 Brabers, J.H.V.J.; Walz, F.; Kronmüller, H.: J. Phys.: Condens. Matter 11 (1999) 1679.10.1088/0953-8984/11/18/304Search in Google Scholar

17 Brabers, J.H.V.J.; Walz, F.; Kronmüller, H.: J. Phys.: Condens. Matter 12 (2000) 5437.10.1088/0953-8984/12/25/308Search in Google Scholar

18 Brabers, V.A.M.: J. Cryst. Growth 8 (1971) 26.10.1016/0022-0248(71)90017-0Search in Google Scholar

19 Walz, F.: phys. stat. sol.(a) 8 (1971) 125; ibid. 82 (1984) 179; ibid. 147 (1995) 237; Appl. Phys. 3 (1974) 313.10.1002/pssa.2210080112Search in Google Scholar

20 Kronmüller, H.: Nachwirkung in Ferromagnetika, Springer-Verlag, Berlin (1968).10.1007/978-3-642-87578-6Search in Google Scholar

21 Blythe, H.J.; Kronmüller, H.; Seeger, A.: Walz, F.: phys. stat. sol. (a) 181 (2000) 233.10.1002/1521-396X(200010)181:2<233::AID-PSSA233>3.0.CO;2-8Search in Google Scholar

22 Kronmüller, H.; Walz, F.: Phil. Mag. 42 (1980) 433.10.1080/01418638008221886Search in Google Scholar

23 Walz, F.; Brabers, V.A.M.; Chikazumi, S.; Kronmüller, H.; Rigo, M.O.: phys. stat. sol. (a) 110 (1982) 471.10.1002/pssb.2221100212Search in Google Scholar

24 Lenge, N.; Kronmüller, H.; Walz, F.: J. Phys. Soc. Jpn. 53 (1984) 1406.10.1143/JPSJ.53.1406Search in Google Scholar

25 Walz, F.; Kronmüller, H.: phys. stat. sol. (b) 160 (1990) 661; ibid. 181 (1994) 485.10.1002/pssb.2221600227Search in Google Scholar

26 Walz, F.; Brabers, V.A.M.; Kronmüller, H.: J. Phys. IV France 7 (1997) C1–569.Search in Google Scholar

27 Tsuda, N.; Nasu, K.; Yanase, A.; Siratori, K.: Electronic Conduction in Oxides, Springer-Verlag, Heidelberg (1990).10.1007/978-3-662-02668-7Search in Google Scholar

28 Brabers, V.A.M., in: K.H.J. Buschow (ed.), Progress in Spinel Ferrites Research, John Wiley, New York (1995).10.1016/S1567-2719(05)80032-0Search in Google Scholar

29 Kronmüller, H.: J. Magn. Magn. Mater. 4 (1977) 280.10.1016/0304-8853(77)90049-XSearch in Google Scholar

30 Slonczewski, J.C.: Phys. Rev. 110 (1958) 1341.10.1103/PhysRev.110.1341Search in Google Scholar

31 Slonczewski, J.C.: J.Appl. Phys. 32 (1961) 253S.10.1063/1.2000425Search in Google Scholar

32 Chikazumi, S.: Phsics of Magnetism, Krieger, New York (1978).Search in Google Scholar

33 Bickford, L.R.; Pappis, J.; Stull, J.L.: Phys. Rev. 99 (1955) 1210.10.1103/PhysRev.99.1210Search in Google Scholar

34 Smit, J.; Wijn, H.P.J.: Ferrites, Wiley, New York (1959).Search in Google Scholar

35 Kronmüller, H., in: A. Seeger (ed.), Moderne Probleme der Metallphysik, Springer-Verlag, Berlin (1966) 24.10.1007/978-3-642-87531-1_2Search in Google Scholar

36 Shannon, R.D.: Acta Cryst. A 32 (1976) 751.10.1107/S0567739476001551Search in Google Scholar

37 Broese van Groenou, A.; Bongers, P.F.; Stuyts, A.L.: Mater. Sci. Eng. 3 (1968/69) 317.10.1016/0025-5416(69)90042-1Search in Google Scholar

38 Kronmüller, H.; Fähnle, M.; Domann, M.; Grimm, H.; Grimm, R.; Gröger, B.: J. Magn. Magn. Mater. 13 (1979) 53.10.1016/0304-8853(79)90029-5Search in Google Scholar

39 Kronmüller, H., in: International Atomic Energy Agency (ed.), Atomic Energy Review, Suppl. No.1, Vienna (1981) 255.Search in Google Scholar

40 Walz, F.; Kronmüller, H.; Martinez, D.; Rivas, J.: phys. stat. sol. (a) 138 (1993) 265.10.1002/pssa.2211380125Search in Google Scholar

Received: 2002-04-11
Published Online: 2022-02-12

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. Interplay between chemical and magnetic roughness of Pt in a Pt/Co bilayer investigated with X-ray resonant magnetic reflectometry
  6. Thermal stability and magnetic anisotropy dispersion in high-density hard-disk media
  7. Thickness dependence of magnetization structures in thin Permalloy rectangles
  8. Solving the selectivity problem in magnetic random access memories using configurations that form C-states
  9. Second-order magnetoelastic effects: From the Dirac equation to the magnetic properties of ultrathin epitaxial films for magnetic thin-film applications
  10. Magnetic relaxation in nanocrystalline systems: linking Monte Carlo steps with time
  11. Effect of domain size on the magneto-elastic damping in amorphous ferromagnetic metals
  12. The character and role of grain boundaries in NdFeB-type alloys and magnets
  13. Magnetic domain structure and spin reorientation process
  14. Magnetic properties of Tb(Fe, Mo)12 and Tb(Fe, Mo)12C compounds
  15. Microstructure, magnetic properties and magnetic hardening in 2 : 17 Sm–Co magnets
  16. Micromagnetism and microstructure – tailoring of high-performance permanent magnets
  17. Metastable alloys at moderate cooling rates
  18. Thermal critical phenomena and crossover between critical regimes in ferromagnets with long-range interactions
  19. Vacancies in thermal equilibrium and ferromagnetism near the Curie temperature
  20. The vortex lattice in superconductors
  21. Functional substrates – a novel approach to tailor transport properties and flux-line pinning in YBa2Cu3O7 – x thin films
  22. Superconducting permanent magnets and their application in magnetic levitation
  23. Magneto-optical studies of flux pinning in high-temperature superconductors
  24. Atomic transport in amorphous metals
  25. A novel technique for measuring diffusivities of short-lived radioisotopes in solids
  26. Hydrogen four-level tunnel systems in substitutional body-centred cubic alloys
  27. Magnetic relaxation phenomena in cobalt
  28. The Verwey transition in magnetite as studied by means of definite impurity doping
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Bücher/Books
  32. Conferences/Konferenzen
  33. DGM Training/DGM Fortbildung
Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2002-0187/html
Scroll to top button