Home A novel technique for measuring diffusivities of short-lived radioisotopes in solids
Article
Licensed
Unlicensed Requires Authentication

A novel technique for measuring diffusivities of short-lived radioisotopes in solids

  • Thilo Voss , Andreas Strohm , Stefan Matics , Peter Scharwaechter and Werner Frank EMAIL logo
Published/Copyright: February 12, 2022
Become an author with De Gruyter Brill

Abstract

After reminding the reader of the major techniques for measuring diffusion coefficients in solids, a detailed description of the conventional radiotracer techniques is presented. These allow to measure solid-state diffusivities in the regime 10– 8–10– 24 m2s– 1 and therefore, and for other reasons to be discussed, are superior to all competing methods. However, the conventional radiotracer techniques suffer from the restriction that they are not applicable to radio-tracer atoms with half-lives t1/2 ≲ 1 d. The main objective of this paper is to introduce a novel experimental set-up which enables us to perform radiotracer-type diffusivity measurements with short-lived radioisotopes (1 d ≳ t ≳ 10 min). First results on the diffusion of 31Si (t1/2 = 2.6 h) and 11C (t1/2 = 20.38 min) in Si–Ge alloys and Si –C–N-based ceramics measured in this set-up are presented.


Dedicated to Professor Dr. Helmut Kronmüller on the occasion of his 70th birthday



Prof. Dr. Werner Frank Max-Planck-Institut für Metallforschung Heisenbergstr. 1, D-70569 Stuttgart, Germany Tel.: +49 711 689 1940 Fax: +49 711 689 1922

  1. The authors wish to thank C. Grodon, J. Huikari, P. Laitinen, A. Nieminen, and J. Räisänen for their assistance in carrying out the experiments. F. Aldinger’s and J. Bill’s support of and stimulating interest in our diffusion measurements on polymer-derived ceramics is gratefully acknowledged. The provision of the specimen materials by Lawrence Berkeley Laboratory, CA, USA, by Institut für Festkörperphysik der ETH Zürich, Switzerland, by Institute of Physics and Astronomy, Aarhus, Denmark, by Wacker-Siltronic, Burghausen, Germany, and by Pulvermetallurgisches Laboratorium am Max-Planck-Institut für Metallforschung, Stuttgart, Germany, is appreciated. Moreover, the authors are grateful to ISOLDE at CERN, Geneva, Switzerland, to Institut für Strahlen- und Kernphysik at Bonn University, Germany, and to IGISOL at University of Jyväskylä, Finland, for radioisotope implantations. Financial support by the Deutsche Forschungsgemeinschaft within the project “Neue Precursorkeramiken aus kondensierten molekularen Vorstufen” (project no. FR999/8-3), by the Academy of Finland within the framework of the Finnish Center of Excellence Program 2000–2005 (project no. 44875 in the Nuclear and Condensed Matter Physics Program at JYFL), and by the HPRI Program of the European Community is acknowledged.

References

1 Köster, U.; Herold, U.: J. Phys. (Paris) C8 (1980) 41.10.1051/jphyscol:1980888Search in Google Scholar

2 Rosenblum, M.P.; Spaepen, F.; Turnbull, D.: Appl. Phys. Lett. 37 (1980) 184.10.1063/1.91818Search in Google Scholar

3 Heumann, T.: Diffusion in Metallen, Springer, Berlin (1992).10.1007/978-3-642-86413-1Search in Google Scholar

4 Hood, G.M.; Laursen, T.; Jackman, J.A.; Belec, R.; Schultz, R.J.; Whitton, J.L.: Phil. Mag. A 63 (1991) 937.10.1080/01418619108213926Search in Google Scholar

5 Van den Belt, T.G.M.; De Witt, J.H.W.: Thin Solid Films 109 (1983) 1.10.1016/0040-6090(83)90025-1Search in Google Scholar

6 Amsel, G.; Béranger, G.; De Gélas, B.; Lacombe, P.: J. Appl. Phys. 39 (1968) 2246.10.1063/1.1656538Search in Google Scholar

7 Amsel, G.; Maurel, B.: Nucl. Inst. Meth. 218 (1983) 183.10.1016/0167-5087(83)90977-8Search in Google Scholar

8 Mazur, R.G.; Dickey, D.H.: J. Electrochem. Soc. 113 (1966) 255.10.1149/1.2423927Search in Google Scholar

9 Ziegler, J.F.; Biersack, J.P.; Littmark, U., in: J.F. Ziegler (ed.), The Stopping and Range of Ions in Solids, Vol. I, Pergamon Press, New York (1985); see also Vols. 2 – 5 of this series.Search in Google Scholar

10 Williams, P., in: H.S. Massey, E.W. McDaniel, B. Bederson (eds.), Applied Atomic Collision Physics, Vol. IV, Academic Press, New York (1983) 327.Search in Google Scholar

11 Tannhauser, D.S.; Kilner, J.A.; Steele, B.C.H.: Nucl. Instr. Meth. 218 (1983) 504.10.1016/0167-5087(83)91030-XSearch in Google Scholar

12 Makin, S.M.; Rowe, A.H.; Le Claire, A.D.: Proc. Phys. Soc. 70 (1954) 545.10.1088/0370-1301/70/6/301Search in Google Scholar

13 Rothman, S.J., in: A.S. Nowick, G. Murch (eds.), Diffusion in Crystalline Solids, Academic Press, Orlando, FL (1984) 1.Search in Google Scholar

14 Rank, C.; Horváth, J.; Werner, M.; Frank, W.: Vakuum in der Praxis 4 (1990) 286.10.1002/vipr.19900020411Search in Google Scholar

15 Graham, D.: Rev. Sci. Instr. 40 (1969) 897.10.1063/1.1684099Search in Google Scholar

16 Maier, K.; Schüle, W.: Euratom Report EUR 5234 d (1974).Search in Google Scholar

17 Mehrer, H.; Maier, K.; Hettich, G.; Mayer, H.J.; Rein, G.: J. Nucl. Mater. 69 & 70 (1978) 545.10.1016/0022-3115(78)90269-6Search in Google Scholar

18 Horváth, J.; Mehrer, H.: Cryst. Latt. Def. Amorph. Mater. 17 (1987) 249.Search in Google Scholar

19 Horz, M.: Dissertation, Universität Stuttgart (1997).Search in Google Scholar

20 Frank, W.; Def. Diff. Forum 75 (1981) 121.10.4028/www.scientific.net/DDF.75.121Search in Google Scholar

21 Scharwaechter, P.; Frank, W.; Kronmüller, H.: Z. Metallkd. 87 (1996) 11.Search in Google Scholar

22 Karoui, A.; Karoui, F.S.; Yang, D.; Rozgonyi, G.A.: Solid State Phenomena 82–84 (2002) 69.10.4028/www.scientific.net/SSP.82-84.69Search in Google Scholar

23 Frank, W.; Gösele, U.; Mehrer, H.; Seeger, A., in: As Ref. [13], p. 63.Search in Google Scholar

24 Aldinger, F.; Weinmann, M.; Bill, J.: Pure & Appl. Chem. 70 (1998) 439.10.1351/pac199870020439Search in Google Scholar

25 Matics, S.: Dissertation, Universität Stuttgart (2000).Search in Google Scholar

26 Matics, S.; Frank, W.: J. Non-Cryst. Solids 266–269 (2000) 830.10.1016/S0022-3093(99)00850-9Search in Google Scholar

27 Gippius, A.A.; Vavilov, V.S.; Zaitsev, A.M.; Zhakupbekov, B.S.: Physica 116 B (1983) 187.10.1016/0378-4363(83)90247-4Search in Google Scholar

28 Frank, W.; Blüher, R.; Schmich, I., in: P. Vincenzini, V. Buscaglia (eds.), Mass and Charge Transport in Inorganic Materials – Fundamentals to Devices, Part A, Techna, Faenza (2000) 205.Search in Google Scholar

29 Strohm, A.; Voss, T.; Frank, W.; Laitinen, P.; Räisänen, J.: Z. Metallkd. 93 (2002) 737.10.3139/146.020737Search in Google Scholar

30 Strohm, A.: to be published.Search in Google Scholar

31 Voss, T.: to be published.Search in Google Scholar

32 Anton, R.; Wiegner, T.; Naumann, W.; Liebmann, M.; Klein, C.; Bradley, C.: Rev. Sci. Inst. 71 (2000) 1177.10.1063/1.1150420Search in Google Scholar

Received: 2002-05-13
Published Online: 2022-02-12

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. Interplay between chemical and magnetic roughness of Pt in a Pt/Co bilayer investigated with X-ray resonant magnetic reflectometry
  6. Thermal stability and magnetic anisotropy dispersion in high-density hard-disk media
  7. Thickness dependence of magnetization structures in thin Permalloy rectangles
  8. Solving the selectivity problem in magnetic random access memories using configurations that form C-states
  9. Second-order magnetoelastic effects: From the Dirac equation to the magnetic properties of ultrathin epitaxial films for magnetic thin-film applications
  10. Magnetic relaxation in nanocrystalline systems: linking Monte Carlo steps with time
  11. Effect of domain size on the magneto-elastic damping in amorphous ferromagnetic metals
  12. The character and role of grain boundaries in NdFeB-type alloys and magnets
  13. Magnetic domain structure and spin reorientation process
  14. Magnetic properties of Tb(Fe, Mo)12 and Tb(Fe, Mo)12C compounds
  15. Microstructure, magnetic properties and magnetic hardening in 2 : 17 Sm–Co magnets
  16. Micromagnetism and microstructure – tailoring of high-performance permanent magnets
  17. Metastable alloys at moderate cooling rates
  18. Thermal critical phenomena and crossover between critical regimes in ferromagnets with long-range interactions
  19. Vacancies in thermal equilibrium and ferromagnetism near the Curie temperature
  20. The vortex lattice in superconductors
  21. Functional substrates – a novel approach to tailor transport properties and flux-line pinning in YBa2Cu3O7 – x thin films
  22. Superconducting permanent magnets and their application in magnetic levitation
  23. Magneto-optical studies of flux pinning in high-temperature superconductors
  24. Atomic transport in amorphous metals
  25. A novel technique for measuring diffusivities of short-lived radioisotopes in solids
  26. Hydrogen four-level tunnel systems in substitutional body-centred cubic alloys
  27. Magnetic relaxation phenomena in cobalt
  28. The Verwey transition in magnetite as studied by means of definite impurity doping
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Bücher/Books
  32. Conferences/Konferenzen
  33. DGM Training/DGM Fortbildung
Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2002-0184/html
Scroll to top button