Startseite Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes

  • Sobhan Rezayati , Zahra Erfani und Rahimeh Hajinasiri EMAIL logo
Veröffentlicht/Copyright: 3. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A simple, efficient procedure for the preparation of phospho sulfonic acid PO(OSO3H)3 as a Brønsted acidic and recoverable heterogeneous catalyst is described, used for the one-pot synthesis of aryl-14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes. A cost-effective, simple and convenient procedure for the synthesis of aryl-14H-dibenzo[a,j]xanthenes was developed via a onepot condensation from substituted benzaldehydes and β-naphthol under solvent-free conditions. The one-pot condensation of substituted benzaldehydes and 5,5-dimethyl-1,3-cyclohexanedione (dimedone) under solvent-free conditions leads to 1,8-dioxo-octahydro-xanthenes. These protocols afford a number of advantages, such as: excellent yields, very short reaction times, easy procedure, simple methodology and ease of preparation and regeneration of the catalyst.

References

Ahmad, M., King, T. A., Ko, D. K., Cha, B. H., & Lee, J. M. (2002). Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. Journal of Physics D: Applied Physics, 35, 1473-1476. DOI: 10.1088/0022-3727/35/13/303.Suche in Google Scholar

Bigdeli, M. A., Heravi, M. M., & Mahdavinia, G. H. (2007). Silica supported perchloric acid (HClO4-SiO2): A mild, reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl or alkyl-14H-dibenzo[a,j ]xanthenes. Journal of Molecular Catalalysis A: Chemical, 275, 25-29. DOI: 10.1016/j.molcata.2007.05.007.Suche in Google Scholar

Carrigan, M. D., Eash, K. J., Oswald, M. C., & Mohan, R. S. (2001). An efficient method for the chemoselective synthesis of from aromatic aldehydes using bismuth trifiate. Tetrahedron Letters, 42, 8133-8135. DOI: 10.1016/s0040-4039(01)01756-7.Suche in Google Scholar

Dabiri, M., Azimi, S. C., & Bazgir, A. (2008). One-pot synthesis of xanthene derivatives under solvent-free conditions. Chemical Papers, 62, 522-526. DOI: 10.2478/s11696-008-0050-y.Suche in Google Scholar

Das, B., Ravikanth, B., Ramu, R., Laxminarayana, K., & Rao, B. V. (2006). Iodine catalyzed simple and efficient synthesis of 14-aryl or alkyl-14H-dibenzo[a,j ]xanthenes. Journal of Molecular Catalalysis A: Chemical, 255, 74-77. DOI: 10.1016/j.molcata.2006.04.007.Suche in Google Scholar

Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 102, 3667-3692. DOI: 10.1021/cr010338r.Suche in Google Scholar

Hajipour, A. R., Khazdooz, L., & Ruoho, A. E. (2008). Brønsted acidic ionic liquid as an efficient catalyst for chemoselective synthesis of 1,1-diacetates under solventfree conditions. Catalysis Communications, 9, 89-96. DOI: 10.1016/j.catcom.2007.05.003.Suche in Google Scholar

Hajinasiri, R., & Rezayati, S. (2013). Solvent-free synthesis of 1,2-disubstituted derivatives of 1,2- dihydroisoquinoline, 1,2 dihydroquinoline and 1,2-dihydropyridine. Zeitschrift f¨ur Naturforschung B, 68, 818-822. DOI: 10.5560/znb.2013-3095.Suche in Google Scholar

Hasaninejad, A., Dadar, M., & Zare, A. (2012). Silica-supported phosphorus containing catalysts efficiently promoted synthesis of 1,8-dioxo-octahydro-xanthenes under solvent-free conditions. Chemical Science Transactions, 1, 233-238. DOI: 10.7598/cst2012.107.Suche in Google Scholar

Horning, E. C., & Horning, M. G. (1964). Methone derivatives of aldehydes. The Journal of Organic Chemistry, 11, 95-99. DOI: 10.1021/jo01171a014.Suche in Google Scholar

Jha, A., & Beal, J. (2004). Convenient synthesis of 12Hbenzo[ a]xanthenes from 2-tetralone. Tetrahedron Letters, 45, 8999-9001. DOI: 10.1016/j.tetlet.2004.10.046.Suche in Google Scholar

Jin, T. S., Zhang, J. S., Xiao, J. C., Wang, A. Q., & Li, T. S. (2004). Clean synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbenezenesulfonic acid in aqueous media. Synlett, 5, 866-870. DOI: 10.1055/s-2004-820022.Suche in Google Scholar

Jin, T. S., Zhang, J. S., Wang, A. Q., & Li, T. S. (2005). Solid-state condensation reactions between aldehydes and 5,5-dimethyl-1,3-cyclohexanedione by grinding at room temperature. Synthetic Communications, 35, 2339-2345. DOI: 10.1080/00397910500187282.Suche in Google Scholar

Karami, B., Zare, Z., & Eskandari, K. (2013). Molybdate sulfonic acid: Preparation, characterization and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis. Chemical Papers, 67, 145-154. DOI: 10.2478/s11696-012-0263-y.Suche in Google Scholar

Khosropour, A. R., Khodaei, M. M., & Moghannian, H. (2005). A facile, simple and convenient method for the synthesis of 14-alkyl or aryl-14H-dibenzo[a,j ]xanthenes catalyzed by pTSA in solution and solvent-free conditions. Synlett, 6, 955-958. DOI: 10.1055/s-2005-864837.Suche in Google Scholar

Kiasat, A. R., & Fallah-Mehrjardi, M. (2008). B(HSO4)3: A novel and efficient solid acid catalyst for the regioselective conversion of epoxides to thiocyanohydrins under solventfree conditions. Journal of the Brazilian Chemical Society, 19, 1595-1599. DOI: 10.1590/s0103-50532008000800020.Suche in Google Scholar

Kiasat, A. R., Mouradzadegun, A., & Saghanezhad, S. J. (2013). Phospho sulfonic acid: A novel and efficient solid acid catalyst for the one-pot preparation of indazolo[1,2-b]- phthalazinetriones. Journal of the Serbian Chemical Society, 78, 469-476. DOI: 10.2298/jsc120508088k.Suche in Google Scholar

Kitahara, Y., & Tanaka, K. (2002). Synthesis, crystal structure and properties of thiaheterohelicenes containing phenolic hydroxy functions. Chemical Communications, 2002, 932-933. DOI: 10.1039/b110514k.Suche in Google Scholar

Knight, C. G., & Stephens, T. (1989). Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochemical Journal, 258, 683-687.Suche in Google Scholar

Knignt, D. W., & Little, P. B. (1998). The first high-yielding benzyne cyclization using a phenolic nucleophile: A new route to xanthenes. Synlett, 1998, 1141-1143. DOI: 10.1055/s-1998-1878.Suche in Google Scholar

Ko, S. K., & Yao, C. F. (2006). Heterogeneous catalyst: Amberlyst-15 catalyzes the synthesis of 14-substituted-14Hdibenzo[ a,j]xanthenes under solvent-free conditions. Tetrahedron Letters, 47, 8827-8829. DOI: 10.1016/j.tetlet.2006.10. 072.Suche in Google Scholar

Kumar, P. S., Sunil Kumar, B., Rajitha, B., Narsimha Reddy, P., Sreenivasulu, N., & Thirupathi Reddy, Y. (2006). A novel one pot synthesis of 14-aryl-14H-dibenzo[a,j ]xanthenes catalyzed by selectfluorTM under solvent free conditions.Suche in Google Scholar

Arkivoc, 2006, 46-50. DOI: 10.3998/ark.5550190.0007.c05.Suche in Google Scholar

Kumar, R., Nandi, G. C., Verma, R. K., & Singh, M. S. (2010).Suche in Google Scholar

A facile approach for the synthesis of 14-aryl- or alkyl-14Hdibenzo[ a,j ]xanthenes under solvent-free condition. Tetrahedron Letters, 51, 442-445. DOI: 10.1016/j.tetlet.2009.11.064.Suche in Google Scholar

Kuo, C.W., & Fang, J. M. (2001). Synthsis of xanthnes, indanes and tetrahydronaphthalenes via intramolecular phenyl-carbonyl coupling reactions. Synthetic Communications, 31, 877-892. DOI: 10.1081/scc-100103323.Suche in Google Scholar

Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K.Suche in Google Scholar

E. B., & Thomas, G. J. (1997). International Patent No.Suche in Google Scholar

WO9706178. The International Patent System.Suche in Google Scholar

Mokhtary, M., & Refahati, S. (2013). Polyvinylpolypyrrolidonesupported boron trifluoride (PVPP-BF3): Mild and efficient catalyst for the synthesis of 14-aryl-14H-dibenzo[a,j ] xanthenes and bis(naphthalen-2-yl-sulfane) derivatives. Dyes and Pigments, 99, 378-381. DOI: 10.1016/j.dyepig.2013.05.Suche in Google Scholar

023.Suche in Google Scholar

Madhav, J. V., Kuarm, B. S., & Rajitha, B. (2008). Dipyridine cobalt chloride: A novel and efficient catalyst for the synthesis of 14-aryl-14H-dibenzo[a,j ]xanthenes under solvent-free conditions.Suche in Google Scholar

Arkivoc, 2008, 204-209. DOI: 10.3998/ark.5550190.Suche in Google Scholar

0009.222.Suche in Google Scholar

Mahdavinia, G. H., Rostamizadeh, S., Amani, A. M., & Emdadi, Z. (2009). Ultrasound-promoted greener synthesis of aryl-14H-dibenzo[a,j]xanthenes catalyzed by NH4H2PO4/ SiO2 in water. Ultrasonics sonochemistry, 16, 7-10. DOI: 10.1016/j.ultsonch.2008.05.010.Suche in Google Scholar

Nagarapu, L., Kantevari, S., Mahankhali, V. C., & Apuri, S. (2007). Potassium dodecatungsto cobaltate trihydrate (K5CoW12O40 · 3H2O): A mild and efficient reusable catalyst for the synthesis of aryl-14H-dibenzo[a,j ]xanthenes under conventional heating and microwave irradiation. Catalysis Communications, 8, 1173-1177. DOI: 10.1016/j.catcom.Suche in Google Scholar

2006.11.003.Suche in Google Scholar

Nazari, S., Keshavarz, M., Karami, B., Iravani, N., & Vafaee- Nezhad, M. (2014). Imidazol-1-yl-acetic acid as a novel green bifunctional organocatalyst for the synthesis of 1,8- dioxooctahydroxanthenes under solvent-free conditions. Chinese Chemical Letters, 25, 317-320. DOI: 10.1016/j.cclet.Suche in Google Scholar

2013.12.011.Suche in Google Scholar

Pasha, M. A., & Jayashankara, V. P. (2007). Molecular iodine catalyzed synthesis of aryl-14H-dibenzo[a,j ]xanthenes under solvent-free condition. Bioorganic & Medicinal Chemistry Letters, 17, 621-623. DOI: 10.1016/j.bmcl.2006.11.009.Suche in Google Scholar

Patil, S. B., Bhat, R. P., & Samant, S. D. (2006). Cation exchange resins: Efficient heterogeneous catalysts for facile synthesis of dibenzoxanthene from β-naphthol and aldehydes.Suche in Google Scholar

Synthetic Communications, 36, 2163-2168. DOI: 10.1080/00397910600639372.Suche in Google Scholar

Poupelin, J. P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G., & Lacroix, R. (1978). Synthesis and anti inflammatory properties of bis (2-hydroxy-1- naphthyl)methane derivatives. European Journal of Medicinal Chemistry, 13, 67-71.Suche in Google Scholar

Rajitha, B., Kumar, B. S., Reddy, Y. T., Reddy, P. N., & Sreenivasulu, N. (2005). Sulfamic acid: A novel and efficient catalyst for the synthesis of aryl-14H-dibenzo[a,j ]xanthenes under conventional heating and microwave irradiation. Tetrahedron Letters, 46, 8691-8693. DOI: 10.1016/j.tetlet.2005.10.Suche in Google Scholar

057.Suche in Google Scholar

Rao, G. B. D., Kaushik, M. P., & Halve, A. K. (2012).Suche in Google Scholar

An efficient synthesis of naphtha[1,2-e]oxazinone and 14- substituted-14H-dibenzo[a,j ]xanthene derivatives promoted by zinc oxide nanoparticle under thermal and solventfree conditions. Tetrahedron Letters, 53, 2741-2744. DOI: 10.1016/j.tetlet.2012.03.085.Suche in Google Scholar

Rezayati, S., Hajinasiri, R., Erfani, Z., Rezayati, S., & Afshari- Sharifabad, S. (2014). Boric acid as a highly efficient and reusable catalyst for the one-pot synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions. Iranian Journal of Catalysis, 4, 157-162.Suche in Google Scholar

Saini, A., Kumar, S., & Sandhu, J. S. (2006). A new LiBrcatalyzed, facile and efficient method for the synthesis of 14-alkyl or aryl-14H-dibenzo[a,j ]xanthenes and tetrahydrobenzo[ b]pyrans under solvent-free conventional and microwave heating. Synlett, 2006, 1928-1932. DOI: 10.1055/s-2006-947339.Suche in Google Scholar

Sajjadifar, S., & Rezayati, S. (2014). Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature. Chemical Papers, 68, 531-539. DOI: 10.2478/s11696-013-0480-z.Suche in Google Scholar

Sarkar, A., Roy, S. R., Parikh, N., & Chakraborti, A. K. (2011).Suche in Google Scholar

Nonsolvent application of ionic liquids: organo-catalysis by 1-alkyl-3-methylimidazolium cation based room-temperature ionic liquids for chemoselective N-tert-butyloxycarbonylation of amines and the influence of the C-2 hydrogen on catalytic efficiency. The Journal of Organic Chemistry, 76, 7132-7140.Suche in Google Scholar

DOI: 10.1021/jo201102q.Suche in Google Scholar

Seyyedhamzeh, M., Mirzaei, P., & Bazgir, A. (2008). Solventfree synthesis of aryl-14H-dibenzo[a,j ]xanthenes and 1,8- dioxo-octahydro-xanthenes using silica sulfuric acid as catalyst.Suche in Google Scholar

Dyes and Pigments, 76, 836-839. DOI: 10.1016/j.dyepig.Suche in Google Scholar

2007.02.001.Suche in Google Scholar

Shakibaei, G. I., Mirzaei, P., & Bazgir, A. (2007). Dowex-50W promoted synthesis of 14-aryl-14H-dibenzo[a,j ]xanthene and 1,8-dioxo-octahydroxanthene derivatives under solvent-free conditions. Applied Catalalysis A: General, 325, 188-192.Suche in Google Scholar

DOI: 10.1016/j.apcata.2007.03.008.Suche in Google Scholar

Shaterian, H. R., Ghashang, M., & Mir, N. (2007). Aluminium hydrogensulfate as an efficient and heterogeneous catalyst for preparation of aryl 14H-dibenzo[a,j ]xanthene derivatives under thermal and solvent-free conditions. Arkivoc, 2007, 1-10. DOI: 10.3998/ark.5550190.0008.f01.Suche in Google Scholar

Shirini, F., & Khaligh, N. G. (2012). Succinimide-N-sulfonic acid: An efficient catalyst for the synthesis of xanthene derivatives under solvent-free conditions. Dyes and Pigments, 95, 789-794. DOI: 10.1016/j.dyepig.2012.06.022.Suche in Google Scholar

Shirini, F., Yahyazadeh, A., & Mohammadi, K. (2014). Onepot synthesis of various xanthene derivatives using ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient and reusable catalyst under solvent-free conditions.Suche in Google Scholar

Chinese Chemical Letters, 25, 341-347. DOI: 10.1016/j.cclet.Suche in Google Scholar

2013.11.016.Suche in Google Scholar

Sivaguru, P., & Lalitha, A. (2014). Ceric ammonium nitrate supported HY-zeolite: An efficient catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes. Chinese Chemical Letters, 25, 321-323. DOI: 10.1016/j.cclet.2013.11.043.Suche in Google Scholar

Song, G. Y., Wang, B., Luo, H. T., & Yang, L. M. (2007). Fe3+- montmorillonite as a cost effective and recyclable solid acidic catalyst for the synthesis of xanthenediones. Catalysis Communications, 8, 673-676. DOI: 10.1016/j.catcom.2005.12.Suche in Google Scholar

018.Suche in Google Scholar

Takeshiba, H., & Jiyoujima, T. (1981). Japan Patent No.Suche in Google Scholar

56005480. Tokyo, Japan: Japan Patent Office.Suche in Google Scholar

Tayebee, R., & Tizabi, S. (2012) Highly efficient and environmentally friendly preparation of 14-aryl-14H dibenzo[a,j ]xanthenes catalyzed by tungsto-divanado-phosphoric acid. Chinese Journal of Catalysis, 33, 962-969.Suche in Google Scholar

Tisseh, Z. N., Azimi, S. C., Mirzaei, P., & Bazgir, A. (2008). The efficient synthesis of aryl-5H-dibenzo[b,i]xanthene-5,7,12,14 (13H)-tetraone leuco-dye derivatives. Dyes and Pigments, 79, 273-275. DOI: 10.1016/j.dyepig.2008.04.001.Suche in Google Scholar

Wang J. Q., & Harvey, G. R. (2002). Synthesis of polycyclic xanthenes and furans via palladium catalyzed cyclization of polycyclic aryltriflate esters. Tetrahedron, 58, 5927-5931. DOI: 10.1016/s1872-2067(11)60387-2.Suche in Google Scholar

Zareyee, D., Alizadeh, P., Ghandali, M. S., & Khalilzadeh, M.Suche in Google Scholar

A. (2013). Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon. Chemical Papers, 67, 713-721. DOI: 10.2478/s11696-013-0369-x.Suche in Google Scholar

Zareyee, D., & Serehneh, M. (2014). Recyclable CMK-5 supported sulfonic acid as an environmentally benign catalyst for solvent-free one-pot construction of coumarin through Pechmann condensation. Journal of Molecular Catalysis A: Chemical, 391, 88-91. DOI: 10.1016/j.molcata.2014.04.013.Suche in Google Scholar

Zhang, Z. H., & Liu, Y. H. (2008). Antimony trichloride/SiO2 promoted synthesis of 9-ary-3,4,5,6,7,9-hexahydroxanthene-1,8-diones. Catalysis Communications, 9, 1715-1719. DOI: 10.1016/j.catcom.2008.01.031.Suche in Google Scholar

Zolfigol, M. A., Vahedi, H., Massoudi, A., Sajjadifar, S., Louie, O., & Javaherneshan, N. (2011). Mild and efficient one pot synthesis of benzimidazoles from aldehydes by using BSA as a new catalyst. Clinical Biochemistry, 44, S219. DOI: 10.1016/j.clinbiochem.2011.08.973.Suche in Google Scholar

Zolfigol, M. A., Khakyzadeh, V., Moosavi-Zare, A. R., Zare, A., Azimi, S. B., Asgari, Z., & Hasaninejad, A. (2012). Preparation of various xanthene derivatives over sulfonic acid functionalized imidazolium salts (SAFIS) as novel, highly efficient and reusable catalysts. Comptes Rendus Chimie, 15, 719-736. DOI: 10.1016/j.crci.2012.05.003. Suche in Google Scholar

Received: 2014-6-4
Revised: 2014-6-26
Accepted: 2014-8-12
Published Online: 2015-3-3
Published in Print: 2015-4-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol
  2. Sensitive and selective determination of peptides, PG and PGP, using a novel fluorogenic reagent 4-chlorobenzene-1,2-diol
  3. Spectroscopy studies of sandwich-type complex of silver(I) co-ordinated to nuclear fast red and adenine and its analytical applications
  4. Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy
  5. A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye
  6. Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes
  7. Microfiltration of post-fermentation broth with backflushing membrane cleaning
  8. Mass transfer examination in electrodialysis using limiting current measurements
  9. Determination of diffusivity from mass transfer measurements in a batch dialyzer: numerical analysis of pseudo-steady state approximation
  10. Structural and thermal characterization of copper(II) complexes with phenyl-2-pyridylketoxime and deposition of thin films by spin coating
  11. Oxidation of 4-nitro-o-xylene with nitric acid using N-hydroxyphthalimide under phase transfer conditions
  12. Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites
  13. Eco-friendly conjugate hydrocyanation of α-cyanoacrylates using potassium hexacyanoferrate(II) as cyanating reagent
  14. Morphological orders of spherulitic crystal textures in Belousov–Zhabotinsky-type oscillatory reaction system
  15. Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0058/html
Button zum nach oben scrollen