Microfiltration of post-fermentation broth with backflushing membrane cleaning
-
Marek Gryta
Abstract
Separation of microorganism cells from broth is a very important stage in the recovery of fermentation products. The microfiltration of fermented glycerol solutions was studied. During this process, the filter cake building up on the membrane surface caused an increase of filtration resistances, resulting in the decrease of the permeate flux. In this work, short time reverse flow of permeate was used to remove the fouling layer after each cycle of the filtration. The applied periodical membrane cleaning led to minimization of the observed fouling effects
References
Akhondi, E., Wicaksana, F., Krantz, W. B., & Fane, A. G. (2014). Influence of dissolved air on the effectiveness of cyclic backwashing in submerged membrane systems. Journal of Membrane Science, 456, 77-84. DOI: 10.1016/j.memsci.2013.12.053.Suche in Google Scholar
Bacchin, P., Aimar, P., & Field, R. W. (2006). Critical and sustainable fluxes: Theory, experiments and applications. Journal of Membrane Science, 281, 42-69. DOI: 10.1016/j.memsci.2006.04.014.Suche in Google Scholar
Bastrzyk, J., Gryta, M., & Karakulski, K. (2014). Fouling of nanofiltration membranes used for separation of fermented glycerol solutions. Chemical Papers, 68, 757-765. DOI: 10.2478/s11696-013-0520-8.Suche in Google Scholar
Belfer, S., Fainshtain, R., Purinson, Y., Gilron, J., Nystr¨om, M., & Manttari, M. (2004). Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers. Journal of Membrane Science, 239, 55-64. DOI: 10.1016/j.memsci.2003.09.029.Suche in Google Scholar
Bird, M. R., & Bartlett, M. (2002). Measuring and modelling flux recovery during the chemical cleaning of MF membranes for the processing of whey protein concentrate. Journal of Food Engineering, 53, 143-152. DOI: 10.1016/s0260-8774(01)00151-0.Suche in Google Scholar
Blanpain-Avet, P., Migdal, J. F., & Benezech, T. (2004). The effect of multiple fouling and cleaning cycles on a tubular ceramic microfiltration membrane fouled with a whey protein concentrate. Membrane performance and cleaning efficiency. Food and Bioproducts Processing, 82, 231-243. DOI: 10.1205/fbio.82.3.231.44182.Suche in Google Scholar
Boenigk, R., Bowien, S., & Gottschalk, G. (1993). Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Applied Microbiology and Biotechnology, 38, 453-457. DOI: 10.1007/bf00242936.Suche in Google Scholar
Bonnelye, V., Guey, L., & Del Castillo, J. (2008). UF/MF as RO pre-treatment: the real benefit. Desalination, 222, 59-65. DOI: 10.1016/j.desal.2007.01.129.Suche in Google Scholar
Drożdżyńska, A., Leja, K., & Czaczyk, K. (2011). Biotechnological production of 1,3-propanediol from crude glycerol. BioTechnologia: Journal of Biotechnology, Computational Biology and Bionanotechnology, 92, 92-100.Suche in Google Scholar
Gong, Y., Tang, Y.,Wang, X. L., Yu, L. X., & Liu, D. H. (2004). The possibility of the desalination of actual 1,3 propanediol fermentation broth by electrodialysis. Desalination, 161, 169-178. DOI: 10.1016/s0011-9164(04)90052-5.Suche in Google Scholar
Gryta, M., Markowska-Szczupak, A., Bastrzyk, J., & Tomczak, W. (2013). The study of membrane distillation used for separation of fermenting glycerol solutions. Journal of Membrane Science, 431, 1-8. DOI: 10.1016/j.memsci.2012.12.032.Suche in Google Scholar
Hao, J., Xu, F., Liu, H., & Liu, D. (2006). Downstream processing of 1,3-propanediol fermentation broth. Journal of Chemical Technology and Biotechnology, 81, 102-108. DOI: 10.1002/jctb.1369.Suche in Google Scholar
Hoek, E. M. V., Bhattacharjee, S., & Elimelech, M. (2003). Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir, 19, 4836-4847. DOI: 10.1021/ la027083c.Suche in Google Scholar
Howe, K. J., Ishida, K. P., & Clark, M. M. (2002). Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters. Desalination, 147, 251-255. DOI: 10.1016/s0011-9164(02)00545-3.Suche in Google Scholar
Kang, I. J., Yoon, S. H., & Lee, C. H. (2002). Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor. Water Research, 36, 1803-1813. DOI: 10.1016/s0043-1354(01)00388-8.Suche in Google Scholar
Karakulski, K., Gryta, M., & Bastrzyk, J. (2013). Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes. Chemical Papers, 67, 1164-1171. DOI: 10.2478/s11696-013-0314-z.Suche in Google Scholar
Kosvintsev, S., Cumming, I., Holdich, R., Lloyd, D., & Starov, V. (2004). Sieve mechanism of microfiltration separation. Colloids and Surfaces A: Physicochemical Engineering Aspects, 230, 167-182. DOI: 10.1016/j.colsurfa.2003.09.027.Suche in Google Scholar
Lee, D. J., Chen, G. Y., Chang, Y. R., & Lee, K. R. (2012). Harvesting of chitosan coagulated Chlorella vulgaris using cyclic membrane filtration-cleaning. Journal of the Taiwan Institute of Chemical Engineers, 43, 948-952. DOI: 10.1016/j.jtice.2012.07.002.Suche in Google Scholar
Makardij, A., Chen, X. D., & Farid, M. M. (1999). Microfiltration and ultrafiltration of milk: Some aspects of fouling and cleaning. Food and Bioproducts Processing, 77, 107-113. DOI: 10.1205/096030899532394.Suche in Google Scholar
Metsoviti, M., Zeng, A. P., Koutinas, A. A., & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodieselderived waste glycerol through sterile and non-sterile bioprocesses. Journal of Biotechnology, 163, 408-418. DOI: 10.1016/j.jbiotec.2012.11.018.Suche in Google Scholar
Mohammad, A. W., Basha, R. K., & Leo, C. P. (2010). Nanofiltration of glucose solution containing salts: Effects of membrane characteristics, organics component and salts on retention. Journal of Food Engineering, 97, 510-518. DOI: 10.1016/j.jfoodeng.2009.11.010.Suche in Google Scholar
Saxena, R. K., Anand, P., Saran, S., & Isar, J. (2009). Microbial production of 1,3-propanediol: Recent development and emerging opportunities. Biotechnology Advances, 27, 895-913. DOI: 10.1016/j.biotechadv.2009.07.003.Suche in Google Scholar
Pollice, A., Brookes, A., Jefferson, B., & Judd, S. (2005). Sub-critical flux fouling in membrane bioreactors - a review of recent literature. Desalination, 174, 221-230. DOI: 10.1016/j.desal.2004.09.012.Suche in Google Scholar
Schafer, A. I., Fane, A. G., & Waite, T. D. (Eds.) (2005). Nanofiltration: Principles and applications. Kidlington, UK: Elsevier.Suche in Google Scholar
Tomczak, W., & Gryta, M. (2013). The application of ultrafiltration for separation of glycerol solution fermented by bacteria. Polish Journal of Chemical Technology, 15, 115-120. DOI: 10.2478/pjct-2013-0057.Suche in Google Scholar
Ulbricht, M., Ansorge, W., Danielzik, I., K¨onig, M., & Schuster, O. (2009). Fouling in microfiltration of wine: The influence of the membrane polymer on adsorption of polyphenols and polysaccharides. Separation and Purification Technology, 68, 335-342. DOI: 10.1016/j.seppur.2009.06.004.Suche in Google Scholar
Vellenga, E., & Trag˚ardh, G. (1998). Nanofiltration of combined salt and sugar solutions: coupling between retentions. Desalination, 120, 211-220. DOI: 10.1016/s0011-9164(98)00219-7.Suche in Google Scholar
Wang, Y., Kim, J. H., Choo, K. H., Lee, Y. S., & Lee, C. H. (2000). Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science, 169, 269-276. DOI: 10.1016/s0376-7388(99)00345-2.Suche in Google Scholar
Weng, Y. H., Wei, H. J., Tsai, T. Y., Chen, W. H., Wei, T. Y., Hwang, W. S., Wang, C. P., & Huang, C. P. (2009). Separation of acetic acid from xylose by nanofiltration. Separation and Purification Technology, 67, 95-102. DOI: 10.1016/j.seppur.2009.03.030.Suche in Google Scholar
Xu, P., Drewes, J. E., Kim, T. U., Bellona, C., & Amy, G. (2006). Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. Journal of Membrane Science, 279, 165-175. DOI: 10.1016/j.memsci. 2005.12.001. Suche in Google Scholar
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol
- Sensitive and selective determination of peptides, PG and PGP, using a novel fluorogenic reagent 4-chlorobenzene-1,2-diol
- Spectroscopy studies of sandwich-type complex of silver(I) co-ordinated to nuclear fast red and adenine and its analytical applications
- Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy
- A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye
- Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes
- Microfiltration of post-fermentation broth with backflushing membrane cleaning
- Mass transfer examination in electrodialysis using limiting current measurements
- Determination of diffusivity from mass transfer measurements in a batch dialyzer: numerical analysis of pseudo-steady state approximation
- Structural and thermal characterization of copper(II) complexes with phenyl-2-pyridylketoxime and deposition of thin films by spin coating
- Oxidation of 4-nitro-o-xylene with nitric acid using N-hydroxyphthalimide under phase transfer conditions
- Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites
- Eco-friendly conjugate hydrocyanation of α-cyanoacrylates using potassium hexacyanoferrate(II) as cyanating reagent
- Morphological orders of spherulitic crystal textures in Belousov–Zhabotinsky-type oscillatory reaction system
- Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions
Artikel in diesem Heft
- Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol
- Sensitive and selective determination of peptides, PG and PGP, using a novel fluorogenic reagent 4-chlorobenzene-1,2-diol
- Spectroscopy studies of sandwich-type complex of silver(I) co-ordinated to nuclear fast red and adenine and its analytical applications
- Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy
- A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye
- Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes
- Microfiltration of post-fermentation broth with backflushing membrane cleaning
- Mass transfer examination in electrodialysis using limiting current measurements
- Determination of diffusivity from mass transfer measurements in a batch dialyzer: numerical analysis of pseudo-steady state approximation
- Structural and thermal characterization of copper(II) complexes with phenyl-2-pyridylketoxime and deposition of thin films by spin coating
- Oxidation of 4-nitro-o-xylene with nitric acid using N-hydroxyphthalimide under phase transfer conditions
- Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites
- Eco-friendly conjugate hydrocyanation of α-cyanoacrylates using potassium hexacyanoferrate(II) as cyanating reagent
- Morphological orders of spherulitic crystal textures in Belousov–Zhabotinsky-type oscillatory reaction system
- Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions