Home Microfiltration of post-fermentation broth with backflushing membrane cleaning
Article
Licensed
Unlicensed Requires Authentication

Microfiltration of post-fermentation broth with backflushing membrane cleaning

  • Marek Gryta and Wirginia Tomczak
Published/Copyright: March 3, 2015
Become an author with De Gruyter Brill

Abstract

Separation of microorganism cells from broth is a very important stage in the recovery of fermentation products. The microfiltration of fermented glycerol solutions was studied. During this process, the filter cake building up on the membrane surface caused an increase of filtration resistances, resulting in the decrease of the permeate flux. In this work, short time reverse flow of permeate was used to remove the fouling layer after each cycle of the filtration. The applied periodical membrane cleaning led to minimization of the observed fouling effects

References

Akhondi, E., Wicaksana, F., Krantz, W. B., & Fane, A. G. (2014). Influence of dissolved air on the effectiveness of cyclic backwashing in submerged membrane systems. Journal of Membrane Science, 456, 77-84. DOI: 10.1016/j.memsci.2013.12.053.Search in Google Scholar

Bacchin, P., Aimar, P., & Field, R. W. (2006). Critical and sustainable fluxes: Theory, experiments and applications. Journal of Membrane Science, 281, 42-69. DOI: 10.1016/j.memsci.2006.04.014.Search in Google Scholar

Bastrzyk, J., Gryta, M., & Karakulski, K. (2014). Fouling of nanofiltration membranes used for separation of fermented glycerol solutions. Chemical Papers, 68, 757-765. DOI: 10.2478/s11696-013-0520-8.Search in Google Scholar

Belfer, S., Fainshtain, R., Purinson, Y., Gilron, J., Nystr¨om, M., & Manttari, M. (2004). Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers. Journal of Membrane Science, 239, 55-64. DOI: 10.1016/j.memsci.2003.09.029.Search in Google Scholar

Bird, M. R., & Bartlett, M. (2002). Measuring and modelling flux recovery during the chemical cleaning of MF membranes for the processing of whey protein concentrate. Journal of Food Engineering, 53, 143-152. DOI: 10.1016/s0260-8774(01)00151-0.Search in Google Scholar

Blanpain-Avet, P., Migdal, J. F., & Benezech, T. (2004). The effect of multiple fouling and cleaning cycles on a tubular ceramic microfiltration membrane fouled with a whey protein concentrate. Membrane performance and cleaning efficiency. Food and Bioproducts Processing, 82, 231-243. DOI: 10.1205/fbio.82.3.231.44182.Search in Google Scholar

Boenigk, R., Bowien, S., & Gottschalk, G. (1993). Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Applied Microbiology and Biotechnology, 38, 453-457. DOI: 10.1007/bf00242936.Search in Google Scholar

Bonnelye, V., Guey, L., & Del Castillo, J. (2008). UF/MF as RO pre-treatment: the real benefit. Desalination, 222, 59-65. DOI: 10.1016/j.desal.2007.01.129.Search in Google Scholar

Drożdżyńska, A., Leja, K., & Czaczyk, K. (2011). Biotechnological production of 1,3-propanediol from crude glycerol. BioTechnologia: Journal of Biotechnology, Computational Biology and Bionanotechnology, 92, 92-100.Search in Google Scholar

Gong, Y., Tang, Y.,Wang, X. L., Yu, L. X., & Liu, D. H. (2004). The possibility of the desalination of actual 1,3 propanediol fermentation broth by electrodialysis. Desalination, 161, 169-178. DOI: 10.1016/s0011-9164(04)90052-5.Search in Google Scholar

Gryta, M., Markowska-Szczupak, A., Bastrzyk, J., & Tomczak, W. (2013). The study of membrane distillation used for separation of fermenting glycerol solutions. Journal of Membrane Science, 431, 1-8. DOI: 10.1016/j.memsci.2012.12.032.Search in Google Scholar

Hao, J., Xu, F., Liu, H., & Liu, D. (2006). Downstream processing of 1,3-propanediol fermentation broth. Journal of Chemical Technology and Biotechnology, 81, 102-108. DOI: 10.1002/jctb.1369.Search in Google Scholar

Hoek, E. M. V., Bhattacharjee, S., & Elimelech, M. (2003). Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir, 19, 4836-4847. DOI: 10.1021/ la027083c.Search in Google Scholar

Howe, K. J., Ishida, K. P., & Clark, M. M. (2002). Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters. Desalination, 147, 251-255. DOI: 10.1016/s0011-9164(02)00545-3.Search in Google Scholar

Kang, I. J., Yoon, S. H., & Lee, C. H. (2002). Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor. Water Research, 36, 1803-1813. DOI: 10.1016/s0043-1354(01)00388-8.Search in Google Scholar

Karakulski, K., Gryta, M., & Bastrzyk, J. (2013). Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes. Chemical Papers, 67, 1164-1171. DOI: 10.2478/s11696-013-0314-z.Search in Google Scholar

Kosvintsev, S., Cumming, I., Holdich, R., Lloyd, D., & Starov, V. (2004). Sieve mechanism of microfiltration separation. Colloids and Surfaces A: Physicochemical Engineering Aspects, 230, 167-182. DOI: 10.1016/j.colsurfa.2003.09.027.Search in Google Scholar

Lee, D. J., Chen, G. Y., Chang, Y. R., & Lee, K. R. (2012). Harvesting of chitosan coagulated Chlorella vulgaris using cyclic membrane filtration-cleaning. Journal of the Taiwan Institute of Chemical Engineers, 43, 948-952. DOI: 10.1016/j.jtice.2012.07.002.Search in Google Scholar

Makardij, A., Chen, X. D., & Farid, M. M. (1999). Microfiltration and ultrafiltration of milk: Some aspects of fouling and cleaning. Food and Bioproducts Processing, 77, 107-113. DOI: 10.1205/096030899532394.Search in Google Scholar

Metsoviti, M., Zeng, A. P., Koutinas, A. A., & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodieselderived waste glycerol through sterile and non-sterile bioprocesses. Journal of Biotechnology, 163, 408-418. DOI: 10.1016/j.jbiotec.2012.11.018.Search in Google Scholar

Mohammad, A. W., Basha, R. K., & Leo, C. P. (2010). Nanofiltration of glucose solution containing salts: Effects of membrane characteristics, organics component and salts on retention. Journal of Food Engineering, 97, 510-518. DOI: 10.1016/j.jfoodeng.2009.11.010.Search in Google Scholar

Saxena, R. K., Anand, P., Saran, S., & Isar, J. (2009). Microbial production of 1,3-propanediol: Recent development and emerging opportunities. Biotechnology Advances, 27, 895-913. DOI: 10.1016/j.biotechadv.2009.07.003.Search in Google Scholar

Pollice, A., Brookes, A., Jefferson, B., & Judd, S. (2005). Sub-critical flux fouling in membrane bioreactors - a review of recent literature. Desalination, 174, 221-230. DOI: 10.1016/j.desal.2004.09.012.Search in Google Scholar

Schafer, A. I., Fane, A. G., & Waite, T. D. (Eds.) (2005). Nanofiltration: Principles and applications. Kidlington, UK: Elsevier.Search in Google Scholar

Tomczak, W., & Gryta, M. (2013). The application of ultrafiltration for separation of glycerol solution fermented by bacteria. Polish Journal of Chemical Technology, 15, 115-120. DOI: 10.2478/pjct-2013-0057.Search in Google Scholar

Ulbricht, M., Ansorge, W., Danielzik, I., K¨onig, M., & Schuster, O. (2009). Fouling in microfiltration of wine: The influence of the membrane polymer on adsorption of polyphenols and polysaccharides. Separation and Purification Technology, 68, 335-342. DOI: 10.1016/j.seppur.2009.06.004.Search in Google Scholar

Vellenga, E., & Trag˚ardh, G. (1998). Nanofiltration of combined salt and sugar solutions: coupling between retentions. Desalination, 120, 211-220. DOI: 10.1016/s0011-9164(98)00219-7.Search in Google Scholar

Wang, Y., Kim, J. H., Choo, K. H., Lee, Y. S., & Lee, C. H. (2000). Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science, 169, 269-276. DOI: 10.1016/s0376-7388(99)00345-2.Search in Google Scholar

Weng, Y. H., Wei, H. J., Tsai, T. Y., Chen, W. H., Wei, T. Y., Hwang, W. S., Wang, C. P., & Huang, C. P. (2009). Separation of acetic acid from xylose by nanofiltration. Separation and Purification Technology, 67, 95-102. DOI: 10.1016/j.seppur.2009.03.030.Search in Google Scholar

Xu, P., Drewes, J. E., Kim, T. U., Bellona, C., & Amy, G. (2006). Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. Journal of Membrane Science, 279, 165-175. DOI: 10.1016/j.memsci. 2005.12.001. Search in Google Scholar

Received: 2014-6-25
Revised: 2014-8-27
Accepted: 2014-8-28
Published Online: 2015-3-3
Published in Print: 2015-4-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol
  2. Sensitive and selective determination of peptides, PG and PGP, using a novel fluorogenic reagent 4-chlorobenzene-1,2-diol
  3. Spectroscopy studies of sandwich-type complex of silver(I) co-ordinated to nuclear fast red and adenine and its analytical applications
  4. Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy
  5. A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye
  6. Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes
  7. Microfiltration of post-fermentation broth with backflushing membrane cleaning
  8. Mass transfer examination in electrodialysis using limiting current measurements
  9. Determination of diffusivity from mass transfer measurements in a batch dialyzer: numerical analysis of pseudo-steady state approximation
  10. Structural and thermal characterization of copper(II) complexes with phenyl-2-pyridylketoxime and deposition of thin films by spin coating
  11. Oxidation of 4-nitro-o-xylene with nitric acid using N-hydroxyphthalimide under phase transfer conditions
  12. Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites
  13. Eco-friendly conjugate hydrocyanation of α-cyanoacrylates using potassium hexacyanoferrate(II) as cyanating reagent
  14. Morphological orders of spherulitic crystal textures in Belousov–Zhabotinsky-type oscillatory reaction system
  15. Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions
Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0060/html
Scroll to top button