Home Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol
Article
Licensed
Unlicensed Requires Authentication

Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol

  • Teodora S. Stefanova , Kiril K. Simitchiev and Kiril B. Gavazov EMAIL logo
Published/Copyright: March 3, 2015
Become an author with De Gruyter Brill

Abstract

Liquid-liquid extraction (LLE) and cloud point extraction (CPE) of vanadium(V) ternary complexes with 4-(2-pyridylazo)resorcinol (PAR) and 2,3,5-triphenyl-2H-tetrazolum chloride (TTC) were investigated. The optimal conditions for vanadium extraction and spectrophotometric determination were identified. The composition (V : PAR : TTC) of the extracted species was 1 : 2 : 3 (optimal conditions; LLE), 2 : 2 : 2 (low reagents concentrations; LLE), 1 : 1 : 1 (short heating time; CPE), and 1 : 1 : 1 + 1 : 1 : 0 (optimal extraction conditions; CPE). LLE, performed in the presence of 1,2-diaminocyclohexane-N,N,N’,N’-tetraacetic acid and NH4F as masking agents, afforded the sensitive, selective, precise, and inexpensive spectrophotometric determination of vanadium. The absorption maximum, molar absorptivity, limit of detection, and linear working range were 559 nm, 1.95 × 105 dm3 mol−1 cm−1, 0.7 ng cm−3, and 2.2-510 ng cm−3, respectively. The procedure thus developed was applied to the analysis of drinking waters and steels. The relative standard deviations for V(V) determination were below 9.4 % (4-6 × 10−7 mass %; water samples) and 2.12 % (1-3 mass %; steel samples).

References

Abbas, M. N., Homoda, A.M., & Mostafa, G. A. E. (2001). First derivative spectrophotometric determination of uranium(VI) and vanadium(V) in natural and saline waters and some synthetic matrices using PAR and cetylpyridinum chloride. Analytica Chimica Acta, 436, 223-231. DOI: 10.1016/s0003-2670(01)00926-6.Search in Google Scholar

Azevedo Lemos, V., Souza Santos, E., Selis Santos, M., & Yamaki, R. T. (2007). Thiazolylazo dyes and their application in analytical methods. Microchimica Acta, 158, 189-204. DOI: 10.1007/s00604-006-0704-9.Search in Google Scholar

Budevsky, O., & Johnova, L. (1965). Colorimetric determination of vanadium(V) with 4-(2-pyridylazo)-resorcinol. Talanta, 12, 291-295. DOI: 10.1016/0039-9140(65)80250-8.Search in Google Scholar

Chakrapani, G., Murty, D. S. R., Balaji, B. K., & Rangaswamy, R. (1993). Spectrophotometric method for the determination of vanadium in uranium rich hydrogeochemical samples using pyridyl azo resorcinol (PAR). Talanta, 40, 541-544. DOI: 10.1016/0039-9140(93)80014-i.Search in Google Scholar

Chwastowska, J., & Kosiarska, E. (1985). Extractive-spectrophotometric determination of vanadium traces with 4-(2- pyridylazo) resorcinol and zephiramine in plant materials. Chemia Analityczna (Warsaw), 30(3), 395-400.Search in Google Scholar

Filik, H., Berker, K. I., Balkis, N., & Apak, R. (2004). Simultaneous preconcentration of vanadium(V/IV) species with palmitoyl quinolin-8-ol bonded to amberlite XAD 2 and their separate spectrophotometric determination with 4-(2- pyridylazo)-resorcinol using CDTA as masking agent. Analytica Chimica Acta, 518, 173-179. DOI: 10.1016/j.aca.2004. 05.012.Search in Google Scholar

Gavazov, K., Simeonova, Z., & Alexandrov, A. (1998). Extraction- spectrophotometric study of the system vanadium(V) - 4-(2-pyridylazo)resorcinol - 2,2_,5,5_-tetraphenyl-3,3_-(pbiphenyl) ditetrazolium chloride - water - chloroform. Determination of vanadium in steels. Analytical Laboratory, 7(3), 127-133.Search in Google Scholar

Gavazov, K., Simeonova, Z., & Alexandrov, A. (2000). Extraction spectrophotometric determination of vanadium in natural waters and aluminium alloys using pyridyl azo resorcinol (PAR) and iodo-nitro-tetrazolium chloride (INT). Talanta, 52, 539-544. DOI: 10.1016/s0039-9140(00)00405-7.Search in Google Scholar

Gavazov, K., Lekova, V., Patronov, G., & T¨urkyilmaz, M. (2006a). Extractive-spectrophotometric determination of vanadium( IV/V) in catalysts using 4-(2-pyridylazo)-resorcinol and tetrazolium violet. Chemia Analityczna (Warsaw), 51(1), 221-227.Search in Google Scholar

Gavazov, K., Lekova, V., & Patronov, G. (2006b). A ternary complex of vanadium(V) with 4-(2-pyridylazo)-resorcinol and thiazolyl blue and its application. Acta Chimica Slovenica, 53, 506-511.Search in Google Scholar

Gavazov, K. B., Dimitrov, A. N., & Lekova, V. D. (2007). The use of tetrazolium salts in inorganic analysis. Russian Chemical Reviews, 76, 169-179. DOI: 10.1070/rc2007v076n02abeh 003655.Search in Google Scholar

Gavazov, K. B., & Stefanova, T. S. (2014). Liquid-liquid extraction-spectrophotometric investigations of three ternary complexes of vanadium. Croatica Chemica Acta, in press.Search in Google Scholar

He, X.W., Tubino, M., & Rossi, A. V. (1999). Selective and sensitive spectrophotometric determination of total vanadium with hydrogen peroxide and 4-(2-pyridylazo)-resorcinol. Analytica Chimica Acta, 389, 275-280. DOI: 10.1016/s0003-2670(99)00126-9.Search in Google Scholar

Itoh, J. i., Yotsuyanagi, T., & Aomura, K. (1975). Spectrophotometric studies on the equilibria of vanadium(V)-4-(2- pyridylazo)-resorcinol-polyaminopolycarboxylate systems. Analytica Chimica Acta, 77, 229-237. DOI: 10.1016/s0003-2670(01)95174-8.Search in Google Scholar

Ivanov, V. M. (2005). Ninety years of using azo compounds of the pyridine series as analytical reagents. Zhurnal Analiticheskoi Khimii, 60, 549-554. (in Russian) Karpova, O. I., Lukachina, V. V., & Pilipenko, A. T. (1973). Vanadium-PAR complexes in acidic medium. Ukrainskii Khimicheskii Zhurnal, 39(2), 194-195.Search in Google Scholar

Kawahata, M., Mochizuki, H., Kajiyama, R., & Ichihashi, K. (1965). Spectrophotometric determination of vanadium with 4-(2-pyridylazo)-resorcinol. Bunseki Kagaku, 14, 348-351. DOI: 10.2116/bunsekikagaku.14.348. (in Japanese) Search in Google Scholar

Lobanov, F. I., Nurtaeva, G. K., & Ergozhin, E. E. (1983). Extraction of metal complexes with hydroxyazo compounds of pyridine. Alma-Ata, URSS: Nauka. (in Russian) Search in Google Scholar

Lukachina, V. V., Pilipenko, A. T., & Karpova, O. I. (1973). Three-component complexes of vanadium with 4-(2-pyridylazo) resorcinol and hydroxylamine. Zhurnal Analiticheskoi Khimii, 28, 86-93. (in Russian) Ma, J. P., Du, Z. T., Xu, J., Chu, Q. H., & Pang, Y. (2011). Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5- diformylfuran, and synthesis of a fluorescent material. Chem- SusChem, 4, 51-54. DOI: 10.1002/cssc.201000273.Search in Google Scholar

Marczenko, Z., & Balcerzak, M. (2000). Separation, preconcentration and spectrophotometry in inorganic analysis (Vol. 10). Amsterdam, The Netherlands: Elsevier.Search in Google Scholar

Marczenko, Z., & Balcerzak, M. (2007). Metody spektrofotometrii v UF i vidimoj oblastyakh v neorganicheskom analize.Search in Google Scholar

Moscow, Russia: Binom. Laboratoriya znanij. (in Russian) Minczewski, J., Chwastowska, J., & Mai, P. H. (1975). Spectrophotometric determination of trace amounts of vanadium by formation of the vanadium-4-(2-pyridylazo)resorcinol (PAR)-crystal violet complex: application to the analysis of plant materials. Analyst, 100, 708-715. DOI: 10.1039/an975 0000708.Search in Google Scholar

Morgen, E. A., & Dimova, L. M. (1983). Photometric determination of vanadium with 4-(2-pyridylazo)resorcinol in aqueos-propanolic medium in the presence of titanium. Zhurnal Analiticheskoi Khimii, 38, 2181-2186. (in Russian) Morgen, E. A., & Dimova, L. M. (1984). Extraction-photometric determination of vanadium with 4-(2-pyridylazo)resorcinol in the presence of tetrazolium chloride. Zavodskaya Laboratoriya, 50(10), 7-9. (in Russian) Nishimura, M., Matsunaga, K., Kudo, T., & Obara, F. (1973). Spectrophotometric determination of vanadium in sea water. Analytica Chimica Acta, 65, 466-468. DOI: 10.1016/s0003-2670(01)82513-7.Search in Google Scholar

Pyrzy´nska, K., & Wierzbicki, T. (2004). Determination of vanadium species in environmental samples. Talanta, 64, 823-829. DOI: 10.1016/j.talanta.2004.05.007.Search in Google Scholar

Pyrzy´nska, K. (2005). Recent developments in spectrophotometric methods for determination of vanadium. Microchimica Acta, 149, 159-164. DOI: 10.1007/s00604-004-0304-5.Search in Google Scholar

Pytlakowska, K., Kozik, V., & Dabioch, M. (2013). Complexforming organic ligands in cloud-point extraction of metal ions: A review. Talanta, 110, 202-228. DOI: 10.1016/j.talanta. 2013.02.037.Search in Google Scholar

Rostampour, L., & Taher, M. A. (2008). Determination of trace amounts of vanadium by UV-vis spectrophotometric after separation and preconcentration with modified natural clinoptilolite as a new sorbent. Talanta, 75, 1279-1283. DOI: 10.1016/j.talanta.2008.01.045.Search in Google Scholar

Sabnis, R. W. (2010). Handbook of biological dyes and stains: Synthesis and industrial applications. Hoboken, NJ, USA: Wiley.Search in Google Scholar

Sanchez Rojas, F., & Bosch Ojeda, C. (2009). Recent development in derivative ultraviolet/visible absorption spectrophotometry: 2004-2008: A review. Analytica Chimica Acta, 635, 22-44. DOI: 10.1016/j.aca.2008.12.039.Search in Google Scholar

Sanna, D., Serra, M., Micera, G., & Garribba, E. (2014). Interaction of antidiabetic vanadium compounds with hemoglobin and red blood cells and their distribution between plasma and erythrocytes. Inorganic Chemistry, 53, 1449-1464. DOI: 10.1021/ic402366x.Search in Google Scholar

Şenöz, H. (2012). The chemistry of formazans and tetrazolium salts. Hacettepe Journal of Biology and Chemistry, 40, 293-301.Search in Google Scholar

Shijo, Y., & Takeuchi, T. (1965). Spectrophotometric determination of vanadium with 4-(2-pyridylazo) resorcinol. Bunseki Kagaku, 14, 115-119. DOI: 10.2116/bunsekikagaku.14.115.Search in Google Scholar

Simitchiev, K., Stefanova, V., Kmetov, V., Andreev, G., Kovachev, N., & Canals, A. (2008). Microwave-assisted cloud point extraction of Rh, Pd and Pt with 2-mercaptobenzothiazole as preconcentration procedure prior to ICP-MS analysis of pharmaceutical products. Journal of Analytical Atomic Spectrometry, 23, 717-726. DOI: 10.1039/b715133k.Search in Google Scholar

Široki, M., & Djordjevi´c, C. (1971). Spectrophotometric determination of vanadium with 4-(2-pyridylazo)resorcinol by extraction of tetraphenylphosphonium and arsonium salts. Analytica Chimica Acta, 57, 301-310. DOI: 10.1016/s0003-2670(01)95117-7.Search in Google Scholar

Taylor, M. J. C., & van Staden, J. F. (1994). Spectrophotometric determination of vanadium(IV) and vanadium(V) in each qther’s presence. Review. Analyst, 119, 1263-1276. DOI: 10.1039/an9941901263.Search in Google Scholar

Uslu, M., Ulut¨urk, H., Yartaı, A., & D¨oker, S. (2013). A sensitive method for selective determination of vanadium species by dispersive liquid-liquid microextraction (DLLME) with spectrophotometric detection. Toxicological & Environmental Chemistry, 95, 1638-1649. DOI: 10.1080/02772248.2014.896920.Search in Google Scholar

Vachirapatama, N., Jirakiattikul, Y., Dicinoski, G., Townsend, A. T., & Haddad, P. R. (2005). On-line preconcentration and sample clean-up system for the determination of vanadium as a 4-(2-pyridylazo) resorcinol-hydrogen peroxide ternary complex in plant tissues by ion-interaction high performance liquid chromatography. Analytica Chimica Acta, 543, 70-76. DOI: 10.1016/j.aca.2005.04.021.Search in Google Scholar

Valero, J. (1991). Determinacion fotometrica de vanadio mediante sistemas ternarios. Boletín de la Sociedad Química del Perú, 57, 23-41. (in Spanish) Yerramilli, A., Kavipurapu, C. S., Manda, R. R., & Pillutha, C. M. (1986). Extractive spectrophotometric method for the determination of vanadium(V) in steels and titanium base alloy. Analytical Chemistry, 58, 1451-1453. DOI: 10.1021/ac00298a040.Search in Google Scholar

Yerramilli, A., Manda, R. P. R., Kumar, P. V. S., Kavipurapu, C. S., & Rao, B. V. (1990). Selective and sensitive extraction spectrophotometric method for the determination of vanadium(V) as a mixed ligand complex with Nphenyl benzohydroxamic acid and 4-(2-pyridylazo)resorcinol in non-aqueous media. Microchimica Acta, 100, 87-94. DOI: 10.1007/bf01244503.Search in Google Scholar

Zhou, Z. M., Mao, D. S., & Ye, C. X. (1997). Mobile equilibrium method for determining composition and stability constant of coordination compounds of the form MmRn. Journal of Rare Earths, 15, 216-219. Search in Google Scholar

Received: 2014-6-19
Revised: 2014-8-16
Accepted: 2014-8-16
Published Online: 2015-3-3
Published in Print: 2015-4-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol
  2. Sensitive and selective determination of peptides, PG and PGP, using a novel fluorogenic reagent 4-chlorobenzene-1,2-diol
  3. Spectroscopy studies of sandwich-type complex of silver(I) co-ordinated to nuclear fast red and adenine and its analytical applications
  4. Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy
  5. A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye
  6. Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes
  7. Microfiltration of post-fermentation broth with backflushing membrane cleaning
  8. Mass transfer examination in electrodialysis using limiting current measurements
  9. Determination of diffusivity from mass transfer measurements in a batch dialyzer: numerical analysis of pseudo-steady state approximation
  10. Structural and thermal characterization of copper(II) complexes with phenyl-2-pyridylketoxime and deposition of thin films by spin coating
  11. Oxidation of 4-nitro-o-xylene with nitric acid using N-hydroxyphthalimide under phase transfer conditions
  12. Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites
  13. Eco-friendly conjugate hydrocyanation of α-cyanoacrylates using potassium hexacyanoferrate(II) as cyanating reagent
  14. Morphological orders of spherulitic crystal textures in Belousov–Zhabotinsky-type oscillatory reaction system
  15. Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0048/html
Scroll to top button