Startseite Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy

  • Ľubomír Vančo , Magdaléna Kadlečíková , Juraj Breza EMAIL logo , Pavol Michniak , Michal Čeppan , Milena Reháková , Eva Belányiová und Beata Butvinová
Veröffentlicht/Copyright: 3. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Raman spectroscopy and surface enhanced Raman spectroscopy were used to examine 14 blue inks obtained from commercially available stationery. Standard colouring agents in the inks: β-phase of phtalocyanine blue PB15 and some homologues of the methyl violet class, were identified. Surface enhanced Raman spectra were recorded on a firm heterostructure of silver/nanocrystalline diamond/silicon constituting an active substrate providing the possibility to write directly on the surface. Based on the differences in traditional and surface enhanced Raman spectra, two inks were identified unambiguously, the remaining inks were categorised into three groups exhibiting common spectral features. Despite their similarity, surface enhanced Raman spectra exhibited soft variations enabling discrimination of the inks, thus proving the usefulness of the method.

References

Bell, S. E. J., Stewart, S. P., Ho, Y. C., Craythorne, B. W., & Speers, S. J. (2013). Comparison of the discriminating power of Raman and surface-enhanced Raman spectroscopy with established techniques for the examination of liquid and gel inks. Journal of Raman Spectroscopy, 44, 509-517. DOI: 10.1002/jrs.4202.Suche in Google Scholar

Brunelle, R. L., & Crawford, K. R. (2003). Advances in the forensic analysis and dating of writing ink. Springfield, MA, USA: Charles C. Thomas.Suche in Google Scholar

Causin, V., Casamassima, R., Marega, C., Maida, P., Schiavone, S., Marigo, A., & Villari, A. (2008). The discrimination potential of ultraviolet-visible spectrophotometry, thin layer chromatography and Fourier transform infrared spectroscopy for the forensic analysis of black and blue ballpoint inks. Journal of Forensic Sciences, 53, 1468-1473. DOI: 10.1111/j.1556-4029.2008.00867.x.Suche in Google Scholar

Defeyt, C., Vandenabeele, P., Gilbert, B., Van Pevenage, J., Cloots, R., & Strivay, D. (2012). Contribution to the identification of α-, β- and ε-copper phtalocyanine blue pigments in modern artist’s paints by X-ray powder diffraction, attenuated total reflectance micro-Fourier transform infrared spectroscopy and micro-Raman spectroscopy. Journal of Raman Spectroscopy, 43, 1772-1780. DOI: 10.1002/jrs.4125.Suche in Google Scholar

Eastaugh, N., Walsh, V., Chaplin, T., & Siddall, R. (2008). Pigment compendium: A dictionary and optical microscopy of historical pigments. Oxford, UK: Butterworth-Heinemann.Suche in Google Scholar

Ezcurra, M., Góngora, J. M. G., Maguregui, I., & Alonso, R. (2010). Analytical methods for dating modern writing instrument inks on paper. Forensic Science International, 197, 1-20. DOI: 10.1016/j.forsciint.2009.11.013.Suche in Google Scholar

Geiman, I., Leona, M., & Lombardi, J. R. (2009). Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks. Journal of Forensic Sciences, 54, 947-952. DOI: 10.1111/j.1556-4029.2009.01058.x.Suche in Google Scholar

Le Ru, E., & Etchegoin, P. (2009). Principles of surfaceenhanced Raman spectroscopy and related plasmonic effects. Amsterdam, The Netherlands: Elsevier.Suche in Google Scholar

Mahajan, S., Cole, R. M., Speed, J. D., Pelfrey, S. H., Russell, A. E., Bartlett, P. N., Barnett, S. M., & Baumberg J. J. (2010). Understanding the surface-enhanced Raman spectroscopy “background”. Journal of Physical Chemistry C, 114, 7242-7250. DOI: 10.1021/jp907197b.Suche in Google Scholar

Mazzella, W. D., & Buzzini, P. (2005). Raman spectroscopy of blue gel pen inks. Forensic Science International, 152, 241-247. DOI: 10.1016/j.forsciint.2004.09.115.Suche in Google Scholar

Meng, W., Hu, F., Zhang, L. Y., Jiang, X. H., Lu, L. D., & Wang, X. (2013). SERS and DFT study of crystal violet. Journal of Molecular Structure, 1035, 326-331. DOI: 10.1016/j.molstruc.2012.10.066.Suche in Google Scholar

Scherrer, N. C., Zumbuehl, S., Delavy, F., Fritsch, A., & Kuehnen, R. (2009). Synthetic organic pigments of the 20th and 21st century relevant to artist’s paints: Raman spectra reference collection. Spectrochimica Acta Part A, 73, 505-524. DOI: 10.1016/j.saa.2008.11.029.Suche in Google Scholar

Senior, S., Hamed, E., Masoud, M., & Shehata, E. (2012). Characterization and dating of blue ballpoint pen inks using prin cipal component analysis of UV-VIS absorption spectra, IR spectroscopy and HPTLC. Journal of Forensic Sciences, 57, 1087-1093. DOI: 10.1111/j.1556-4029.2012.02091.x.Suche in Google Scholar

Shaibat, M. A., Casabianca, L. B., Siberio-Pérez, D. Y., Matzger, A. J., & Ishii, Y. (2010). Distinguishing polymorphs of the semiconducting pigment copper phthalocyanine by solid-state NMR and Raman spectroscopy. Journal of Physical Chemistry B, 114, 4400-4406. DOI: 10.1021/jp9061412.Suche in Google Scholar

Smalldon, K. W., & Moffat, A. C. (1973). The calculation of discriminating power for a series of correlated attributes. Journal of the Forensic Science Society, 13, 291-295. DOI: 10.1016/s0015-7368(73)70828-8.Suche in Google Scholar

Weyermann, C., Kirsch, D., Vera, C. C., & Spengler, B. (2009). Evaluation of the photodegradation of crystal violet upon light exposure by mass spectrometric and spectroscopic methods. Journal of Forensic Sciences, 54, 339-345. DOI: 10.1111/j.1556-4029.2008.00975.x. Suche in Google Scholar

Received: 2014-6-13
Revised: 2014-8-27
Accepted: 2014-9-11
Published Online: 2015-3-3
Published in Print: 2015-4-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol
  2. Sensitive and selective determination of peptides, PG and PGP, using a novel fluorogenic reagent 4-chlorobenzene-1,2-diol
  3. Spectroscopy studies of sandwich-type complex of silver(I) co-ordinated to nuclear fast red and adenine and its analytical applications
  4. Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy
  5. A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye
  6. Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes
  7. Microfiltration of post-fermentation broth with backflushing membrane cleaning
  8. Mass transfer examination in electrodialysis using limiting current measurements
  9. Determination of diffusivity from mass transfer measurements in a batch dialyzer: numerical analysis of pseudo-steady state approximation
  10. Structural and thermal characterization of copper(II) complexes with phenyl-2-pyridylketoxime and deposition of thin films by spin coating
  11. Oxidation of 4-nitro-o-xylene with nitric acid using N-hydroxyphthalimide under phase transfer conditions
  12. Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites
  13. Eco-friendly conjugate hydrocyanation of α-cyanoacrylates using potassium hexacyanoferrate(II) as cyanating reagent
  14. Morphological orders of spherulitic crystal textures in Belousov–Zhabotinsky-type oscillatory reaction system
  15. Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions
Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0068/html
Button zum nach oben scrollen