Home A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye
Article
Licensed
Unlicensed Requires Authentication

A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye

  • Jian-Ting Pan , Fei Zhu , Lin Kong , Long-Mei Yang , Xu-Tang Tao , Yu-Peng Tian , Hong-Bo Lu and Jia-Xiang Yang EMAIL logo
Published/Copyright: March 3, 2015
Become an author with De Gruyter Brill

Abstract

Two easily-prepared pyridine-based derivatives of (Z)-2-(4-amino-phenyl)-3-(pyridine-4-yl)acrylonitrile (I) and (Z)-2-phenyl-3-(pyridin-4-yl)acrylonitrile (II ) were designed, synthesised and characterised. Due to the formation of a complex with Hg2+, hence leading to an enhanced ICT effect, I exhibits a visible colour change from light yellow to orange, rendering it suitable for use as a naked-eye sensor for rapid detection of Hg2+ in an aqueous ethanol solution. When mixed with Hg2+, I interacts with Hg2+ in a 2 : 1 (Y1-Hg2+) stoichiometry via a coordination bond with an association constant of 7.7 × 108 M-2 (R2 = 0.96). The present probe I exhibits excellent reproducibility, reversibility, sensitivity and selectivity with the presence of low concentration of Hg2+ (1.74 × 10-10 M).

References

Aıt-Haddou, H., Wiskur, S., Lynch, V., & Anslyn, E. V. (2001). Achieving large color changes in response to the presence of amino acids: A molecular sensing ensemble with selectivity for aspartate. Journal of the American Chemical Society, 123, 11296-11297. DOI: 10.1021/ja011905v.Search in Google Scholar

Azevedo-Pereira, H. M. V. S., & Soares, A. M. V. M. (2010). Effects of mercury on growth, emergence and behavior of Chironomus riparius Meigen (Diptera: Chironomidae). Archives of Environmental Contamination and Toxicology, 59, 216-224. DOI: 10.1007/s00244-010-9482-9.Search in Google Scholar

Bera, K., Das, A. K., Nag, M., & Basak, S. (2014). Development of a rhodamine-rhodanine-based fluorescent mercury sensor and its use to monitor real-time uptake and distribution of inorganic mercury in live zebrafish larvae. Analytical Chemistry, 86, 2740-2746. DOI: 10.1021/ac404160v.Search in Google Scholar

Carter, K. K., Rycenga, H. B., & McNeil, A. J. (2014). Improving Hg-triggered gelation via structural modifications. Langmuir, 30, 3522-3527. DOI: 10.1021/la404567b.Search in Google Scholar

Chemnasiri, W., & Hernandez, F. E. (2012). Gold nanorodbased mercury sensor using functionalized glass substrates. Sensors and Actuators B: Chemical, 173, 322-328. DOI: 10.1016/j.snb.2012.07.002.Search in Google Scholar

Chen, Q. Y., & Chen, C. F. (2005). A new Hg2+-selective fluorescent sensor based on a dansyl amide-armed calix[4]- aza-crown. Tetrahedron Letters, 46, 165-168. DOI: 10.1016/j. tetlet.2004.10.169.Search in Google Scholar

Chen, H., Ji, X., Zhang, S., Shi, W., Wei, M., Evans, D. G., & Duan, X. (2013). A ratiometric fluorescence chemosenser for Hg2+ based on primuline and layered double hydroxide ultrafilms. Sensors and Actuators B: Chemical, 178, 155-162. DOI: 10.1016/j.snb.2012.12.075.Search in Google Scholar

Cheng, X. H., Li, Q. Q., Li, C. G., & Li, Z. (2011). Azobenzenebased colorimetric chemosensors for rapid naked-eye detection of mercury(II). Chemistry - A European Journal, 17, 7276-7281. DOI: 10.1002/chem.201003275.Search in Google Scholar

Coronado, E., Galan-Mascaros, J. R., Marti-Gastaldo, C., Palomares, E., Durrant, J. R., Vilar, R., Gratzel, M., & Nazeeruddin, M. K. (2005). Reversible colorimetric probes for mer cury sensing. Journal of the American Chemical Society, 127, 12351-12356. DOI: 10.1021/ja0517724.Search in Google Scholar

Dalapati, S., Paul, B. K., Jana, S., & Guchhait, N. (2011). Highly selective and sensitive fluorescence reporter for toxic Hg(II) ion by a synthetic symmetrical azine derivative. Sensors and Actuators B: Chemical, 157, 615-620. DOI: 10.1016/j.snb.2011.05.034.Search in Google Scholar

Farhadi, K., Forough, M.,Molaei, R., Hajizadeh, S., & Rafipour, A. (2012). Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors and Actuators B: Chemical, 161, 880-885. DOI: 10.1016/j.snb.2011.11.052.Search in Google Scholar

Goswami, S., Das, S., & Aich, K. (2013). An ICT based highly selective and sensitive sulfur-free sensor for naked eye as well as fluorogenic detection of Hg2+ in mixed aqueous media. Tetrahedron Letters, 54, 4620-4623. DOI: 10.1016/j.tetlet.2013.06.035.Search in Google Scholar

Gundacker, C., Gencik, M., & Hengstschlager, M. (2010). The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: Mercury and lead. Mutation Research/Reviews in Mutation Research, 705, 130-140. DOI: 10.1016/j.mrrev.2010.06.003.Search in Google Scholar

Gunnlaugsson, T., Kruger, P. E., Jensen, P., Tierney, J., Ali, H. D. P., & Hussey, G. M. (2005). Colorimetric “naked eye” sensing of anions in aqueous solution. The Journal of Organic Chemistry, 70, 10875-10878. DOI: 10.1021/jo0520487.Search in Google Scholar

Guo, Z. Q., Zhu, W. H., Zhu, M. M., Wu, X. M., & Tian, H. (2010). Near-infrared cell-permeable Hg2+ -selective ratiometric fluorescent chemodosimeters and fast indicator paper for MeHg+ based on tricarbocyanines. Chemistry - A European Journal, 16, 14424-14432. DOI: 10.1002/chem.201001 769.Search in Google Scholar

Hansen, S., Nieboer, E., Sandanger, T. M., Wilsgaard, T., Thomassen, Y., Veyhe, A. S., & Odland, J. O. (2011). Changes in maternal blood concentrations of selected essential and toxic elements during and after pregnancy. Journal of Environmental Monitoring, 13, 2143-2152. DOI: 10.1039/c1em10051c.Search in Google Scholar

Hu, S. Z., & Chen, C. F. (2011). Hg2+ recognition by triptycenederived heteracalixarenes: Selectivity tuned by bridging heteroatoms and macrocyclic cavity. Organic & Biomolecular Chemistry, 9, 5838-5844. DOI: 10.1039/c1ob05515a.Search in Google Scholar

Huang, J. H., Gao, X., Jia, J. J., Kim, J. K., & Li, Z. G. (2014). Graphene oxide-based amplified fluorescent biosensor for Hg2+ detection through hybridization chain reactions. Analytical Chemistry, 86, 3209-3215. DOI: 10.1021/ac500192r.Search in Google Scholar

Jenssen, M. T. S., Brantsater, A. L., Haugen, M., Meltzer, H. M., Larssen, T., Kvalem, H. E., Birgisdottir, B. E., Thomassen, Y., Ellingsen, D., Alexander, J., & Knutsen, H. K. (2012). Dietary mercury exposure in a population with a wide range of fish consumption - self-capture of fish and regional differences are important determinants of mercury in blood. Science of The Total Environment, 439, 220-229. DOI: 10.1016/j.scitotenv.2012.09.024.Search in Google Scholar

Kim, H. J., Park, J. E., Choi, M. G., Ahn, S. D., & Chang, S. K. (2010). Selective chromogenic and fluorogenic signalling of Hg2+ ions using a fluorescein-coumarin conjugate. Dyes and Pigments, 84, 54-58. DOI: 10.1016/j.dyepig.2009.06.009.Search in Google Scholar

Kim, H. N., Ren, W. X., Kim, J. S., & Yoon, J. Y. (2012). Fluorescent and colorimetric sensors for detection of lead, cadmium and mercury ions. Chemical Society Reviews, 41, 3210-3244. DOI: 10.1039/c1cs15245a.Search in Google Scholar

Koenig, S., Sole, M., Fernandez-Gomez, C., & Diez, S. (2013). New insights into mercury bioaccumulation in deep-sea organisms from the NWMediterranean and their human health implications. Science of The Total Environment, 442, 329-335. DOI: 10.1016/j.scitotenv.2012.10.036.Search in Google Scholar

Lee, M. H., Cho, B. K., Yoon, J. Y., & Kim, J. S. (2007). Selectively chemodosimetric detection of Hg(II) in aqueous media. Organic Letters, 9, 4515-4518. DOI: 10.1021/ol7020115.Search in Google Scholar

Li, X. H., Wu, Y. Q., Liu, Y., Zou, X. M., Yao, L. M., Li, F. Y., & Feng, W. (2014). Cyclometallated ruthenium complexmodified upconversion nanophosphors for selective detection of Hg2+ ions in water. Nanoscale, 6, 1020-1028. DOI: 10.1039/c3nr05195a.Search in Google Scholar

Liang, Z. Q., Wang, C. X., Yang, J. X., Gao, H. W., Tian, Y. P., Tao, X. T., & Jiang, M. H. (2007). A highly selective colorimetric chemosensor for detecting the respective amounts of iron(II) and iron(III) ions in water. New Journal of Chemistry, 31, 906-910. DOI: 10.1039/b701201m.Search in Google Scholar

Lu, F. N., Yamamura, M., & Nabeshima, T. (2013). A highly selective and sensitive ratiometric chemodosimeter for Hg2+ ions based on an iridium(III) complex via thioacetal deprotection reaction. Dalton Transactions, 42, 12093-12100. DOI: 10.1039/c3dt50807b.Search in Google Scholar

Madhu, S., Sharma, D. K., Basu, S. K., Jadhav, S., Chowdhury, A., & Ravikanth, M. (2013). Sensing Hg(II) in vitro and in vivo using a benzimidazole substituted BODIPY. Inorganic Chemistry, 52, 11136-11145. DOI: 10.1021/ic401365x.Search in Google Scholar

Mei, Q. B., Wang, L. X., Tian, B., Yan, F., Zhang, B., Huang, W., & Tong, B. H. (2012). A highly selective and naked-eye sensor for Hg2+ based on quinazoline-4(3H)- thione. New Journal of Chemistry, 36, 1879-1883. DOI: 10.1039/c2nj40400a.Search in Google Scholar

Misra, A., & Shahid, M. (2010). Chromo and fluorogenic properties of some azo-phenol derivatives and recognition of Hg2+ ion in aqueous medium by enhanced fluorescence. The Journal of Physical Chemistry C, 114, 16726-16739. DOI: 10.1021/jp1049974.Search in Google Scholar

Ren, W., Zhu, C. Z., & Wang, E. K. (2012). Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Nanoscale, 4, 5902-5909. DOI: 10.1039/c2nr31410j.Search in Google Scholar

Shafeekh, K. M., Rahim, M. K. A., Basheer, M. C., Suresh, C. H., & Das, S. (2013). Highly selective and sensitive colourimetric detection of Hg2+ ions by unsymmetrical squaraine dyes. Dyes and Pigments, 96, 714-721. DOI: 10.1016/j.dyepig.2012.11.013.Search in Google Scholar

Shellaiah, M., Wu, Y. H., Singh, A., Ramakrishnam Raju, M. V., & Lin, H. C. (2013). Novel pyrene- and anthracenebased Schiff base derivatives as Cu2+ and Fe3+ fluorescence turn-on sensors and for aggregation induced emissions. Journal of Materials Chemistry A, 1, 1310-1318. DOI: 10.1039/c2ta00574c.Search in Google Scholar

Sheng, R. L., Wang, P. F., Liu, W. M., Wu, X. H., & Wu, S. K. (2008). A new colorimetric chemosensor for Hg2+ based on coumarin azine derivative. Sensors and Actuators B: Chemical, 128, 507-511. DOI: 10.1016/j.snb.2007.07.069.Search in Google Scholar

Thirupathi, P., Saritha (nee Gudelli), P., & Lee, K. H. (2014). Ratiometric fluorescence chemosensor based on tyrosine derivatives for monitoring mercury ions in aqueous solutions. Organic & Biomolecular Chemistry, 12, 7100-7109. DOI: 10.1039/c4ob01044b.Search in Google Scholar

Tian, M. Q., & Ihmels, H. (2011). Selective colorimetric detection of Hg2+ and Mg2+ with crown ether substituted N-aryl-9-aminobenzo[b]quinolizinium derivatives. European Journal of Organic Chemistry, 2011, 4145-4153. DOI: 10.1002/ejoc.201100329.Search in Google Scholar

Wang, K., Yang, L. X., Zhao, C., & Ma, H. M. (2013). 4-(8- Quinolyl)amino-7-nitro-2,1,3-benzoxadiazole as a newcolorimetric probe for rapid and visual detection of Hg2+. Spectrochimica Acta Part A, 105, 29-33. DOI: 10.1016/j.saa.2012. 11.114. Wei, T. B., Li, J. J., Bai, C. B., Lin, Q., Yao, H., Xie, Y. Q., & Zhang, Y. M. (2013). A highly selective colorimetric sensor for Hg2+ based on a copper(II) complex of thiosemicarbazone in aqueous solutions. Science China Chemistry, 56, 923-927. DOI: 10.1007/s11426-013-4863-3.Search in Google Scholar

Wen, J. H., Geng, Z. R., Yin, Y. X., & Wang, Z. L. (2011). A versatile water soluble fluorescent probe for ratiometric sensing of Hg2+ and bovine serum albumin. Dalton Transactions, 40, 9737-9745. DOI: 10.1039/c1dt10362h.Search in Google Scholar

Wu, S. P., Du, K. J., & Sung, Y. M. (2010). Colorimetric sensing of Cu(II): Cu(II) induced deprotonation of an amide responsible for color changes. Dalton Transactions, 39, 4363-4368. DOI: 10.1039/b925898a.Search in Google Scholar

Xie, R. J., Yi, Y. R., He, Y., Liu, X. G., & Liu, Z. X. (2013). A simple BODIPY-imidazole-based probe for the colorimetric and fluorescent sensing of Cu(II) and Hg(II). Tetrahedron, 69, 8541-8546. DOI: 10.1016/j.tet.2013.07.059.Search in Google Scholar

Xing, X. Q., Du, R., Li, Y. F., Li, B., Cai, Q., Mo, G., Gong, Y., Chen, Z. G., & Wu, Z. H. (2013). Structural change of human hair induced by mercury exposure. Environmental Science & Technology, 47, 11214-11220. DOI: 10.1021/es402335k.Search in Google Scholar

Yang, M. H., Thirupathi, P., & Lee, K. H. (2011). Selective and sensitive ratiometric detection of Hg(II) ions using a simple amino acid based sensor. Organic Letters, 13, 5028-5031. DOI: 10.1021/ol201683t.Search in Google Scholar

Zhao, Q. H., Wang, Y., Cao, Y., Chen, A. G., Ren, M., Ge, Y. S., Yu, Z. F., Wan, S. Y., Hu, A. L., Bo, Q. L., Ruan, L., Chen, H., Qin, S. Y., Chen, W. J., Hu, C. L., Tao, F. B., Xu, D. X., Xu, J., Wen, L. P., & Li, L. (2014). Potential health risks of heavy metals in cultivated topsoil and grain, including correlations with human primary liver, lung and gastric cancer, in Anhui province, Eastern China. Science of The Total Environment, 470-471, 340-347. DOI: 10.1016/j.scitotenv.2013.09.086.Search in Google Scholar

Zhong, K. L., Zhou, X., Hou, R. B., Zhou, P., Hou, S. H., Bian, Y. J., Zhang, G., Tang, L. J., & Shang, X. H. (2014). A watersoluble highly sensitive and selective fluorescent sensor for Hg2+ based on 2-(2-(8-hydroxyquinolin)-yl)benzimidazole via ligand-to-metal charge transfer (LMCT). RSC Advances, 4, 16612-16617. DOI: 10.1039/c4ra00060a.Search in Google Scholar

Zhou, H. P., Wang, J. Q., & Chen, Y. X., Xi, W. G., Zheng, Z., Xu, D. L., Cao, Y. L., Liu, G., Zhu, W. J.,Wu, J. Y., & Tian, Y. P. (2013). New diaminomaleonitrile derivatives containing aza-crown ether: Selective, sensitive and colorimetric chemosensors for Cu(II). Dyes and Pigments, 98, 1-10. DOI: 10.1016/j.dyepig.2013.01.018.Search in Google Scholar

Zhu,M., Yuan,M. J., Liu, X. F., Xu, J. L., Lv, J., Huang, C. S., Liu, H. B., Li, Y. L., Wang, S., & Zhu, D. B. (2008). Visible near-infrared chemosensor for mercury ion. Organic Letters, 10, 1481-1484. DOI: 10.1021/ol800197t. Search in Google Scholar

Received: 2014-6-4
Revised: 2014-8-17
Accepted: 2014-9-17
Published Online: 2015-3-3
Published in Print: 2015-4-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol
  2. Sensitive and selective determination of peptides, PG and PGP, using a novel fluorogenic reagent 4-chlorobenzene-1,2-diol
  3. Spectroscopy studies of sandwich-type complex of silver(I) co-ordinated to nuclear fast red and adenine and its analytical applications
  4. Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy
  5. A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye
  6. Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes
  7. Microfiltration of post-fermentation broth with backflushing membrane cleaning
  8. Mass transfer examination in electrodialysis using limiting current measurements
  9. Determination of diffusivity from mass transfer measurements in a batch dialyzer: numerical analysis of pseudo-steady state approximation
  10. Structural and thermal characterization of copper(II) complexes with phenyl-2-pyridylketoxime and deposition of thin films by spin coating
  11. Oxidation of 4-nitro-o-xylene with nitric acid using N-hydroxyphthalimide under phase transfer conditions
  12. Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites
  13. Eco-friendly conjugate hydrocyanation of α-cyanoacrylates using potassium hexacyanoferrate(II) as cyanating reagent
  14. Morphological orders of spherulitic crystal textures in Belousov–Zhabotinsky-type oscillatory reaction system
  15. Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions
Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0061/html
Scroll to top button