We prove the Kobayashi—Hitchin correspondence and the approximate Kobayashi—Hitchin correspondence for twisted holomorphic vector bundles on compact Kähler manifolds. More precisely, if X is a compact manifold and g is a Gauduchon metric on X, a twisted holomorphic vector bundle on X is g −polystable if and only if it is g −Hermite-Einstein, and if X is a compact Kähler manifold and g is a Kähler metric on X , then a twisted holomorphic vector bundle on X is g −semistable if and only if it is approximate g −Hermite-Einstein.
Inhalt
-
29. Januar 2021
-
21. Februar 2021
-
24. Februar 2021
-
23. März 2021
-
28. Juni 2021
-
5. Juli 2021
-
16. Juli 2021
-
23. Juli 2021
-
4. September 2021
-
17. September 2021
-
11. Oktober 2021
-
18. Oktober 2021
-
15. November 2021
-
Open AccessPartially integrable almost CR structures23. Dezember 2021
-
26. Dezember 2021
- Special Issue “Generalized Geometry” Coordinating Editors: Vicente Cortes, Liana David and Carlos Shahbazi
-
14. Juni 2021
-
Open AccessAbelian Complex Structures and Generalizations23. August 2021
-
Open AccessTowards an extended/higher correspondence18. Oktober 2021
-
28. November 2021