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Abstract: Let Ts p » be the canonical blow-up of the Grassmann manifold G(p, n) constructed by blowing up
the Pliicker coordinate subspaces associated with the parameter s. We prove that the higher cohomology
groups of the tangent bundle of Ts,p,» vanish. As an application, Ts,p,n is locally rigid in the sense of Kodaira-
Spencer.
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1 Introduction

Sheaf cohomology of vector bundles is a fundamental object studied in complex geometry and algebraic
geometry. Based on such data, one may derive interesting geometric properties of the base varieties. For in-
stance, geometers exploit appropriate vanishing theorems of higher cohomology to construct global sections
of vector bundles, and extend sections of vector bundles from subvarieties to the ambient spaces. Kodaira-
Spencer theory relates the local deformation of the complex structure of a complex manifold X to the first
cohomology of its tangent bundle H'(X, T). Kuranishi proved that an element § ¢ H'(X, Tx) represents a
local deformation if and only if its obstruction [6, 8] € H?(X, Tx) vanishes, and thus parametrized the local
deformation of complex structures by the so called Kuranishi family.

The study of cohomology groups of equivariant vector bundles on homogeneous manifolds has a long
history dating back at least to the celebrated Borel-Weil-Bott theorem in 1950s, which gives explicit formu-
las in terms of the representations of the groups acting on the manifolds. Since then, various work has been
done in extending the Borel-Weil-Bott theorem under different circumstances. An important direction of fur-
ther generalization is to compute the cohomology of vector bundles on a larger class of manifolds, that is, the
spherical varieties. Kato ([10]) and Tchoudjem ([13]) settled the line bundle case for certain special spherical
varieties (wonderful varieties in the sense of De Concini-Procesi [7]) in terms of the weights of the correspond-
ing lie algebras.

Our paper stems from a systematic study of the canonical blow-ups of Grassmann manifolds ([8]). It is an
interesting family of spherical varieties, which generalizes the notion of wonderful varieties to homeward va-
rieties. Recall that, by a result of Bott ([3]), every smooth homogeneous algebraic manifold X over C has trivial
higher cohomology groups of its tangent bundle. This implies that X is locally rigid, or equivalently, any de-
formation X; parametrized by a complex manifold T with X analytically isomorphic to X, is holomorphically
trivial. Another application in the theory of D-modules is that every regular function on the cotangent bundle
of X is the symbol of a differential operator on X with regular coefficients (see [1]). Bien-Brion (Proposition 4.2
in [1]) generalized Bott’s theorem to regular spherical Fano manifolds.
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We are interested in the following question, which naturally relates to the computation of the cohomology
groups of the tangent bundle of Ts p, n.

Question 1.1. What is the Kuranishi family of Ts p »?

By a result of Sano ([12]), the local deformation of Ts ., is unobstructed, or equivalently, the Kuranishi family
of Ts,p,n is smooth. Unfortunately, Bien-Brion’s brilliant argument does not apply here directly, for in general
Ts,p,n is only weak Fano instead of Fano. More precisely, the difficulty comes from the fact that the restriction
of a big and numerical effective line bundle may fail to be big. An example illustrating this is to blow up a
point in CP?, and then restrict the pull-back line bundle of O¢p2(1) to the exceptional divisor.

We state our main result as follows.

Theorem 1.2. Let Ts,p, n be the canonical blow up of Grassmann manifolds. Then,
Hi(Ts,p,n, T:rs,p,n) =0, i>0. 6))
In particular, Ts,p,n is locally rigid.

Noticing that Ty , »p is isomorphic to Kausz’s ([9]) modular compactifications of general linear groups over
C, we have that

Corollary 1.3. Let KGL) be Kausz’s modular compactification of the general linear group GL(p, C). The higher
cohomology of the tangent bundles of KGLy vanishes. In particular, KGLy, is locally rigid.

We now briefly describe the main idea of the proof. Notice that the argument in [1] used the ampleness of
the anticanonical bundle only when applying the Kodaira vanishing theorem. Hence, it is natural to expect a
finer result if one can replace the Kodaira vanishing theorem by the Kawamata-Viehweg vanishing theorem.
To deal with the difficulty that the restriction of a big line bundle fails to be big, we use the Van der Waerden
representation (see [8]) to extract the very explicit geometry of Ts p ». The crucial step is Lemma 3.1, which
shows that the B-invariant divisors of the boundary divisors can be derived from the restriction of the B-
invariant divisors of Ts,p, n. Eventually, computation yields that in our case the restriction of the anticanonical
bundle of Ts,p,» to the components of the boundary divisors is indeed big and numerical effective, which is
sufficient to apply the Kawamata-Viehweg vanishing theorem.

The organization of the paper is as follows. In §2, we recall the construction of the canonical blow-ups of
Grassmann manifolds and the basic properties following [8]. In §3.1, we study the cone of effective divisors of
the components of the boundary divisor of Ts p,n. In §3.2, we first establish some numerical formulas of the
restriction for the anticanonical bundles (the proof for the case p = n - s or s is left to Appendices B.1 and
B.2); then prove that the restriction of the anticanonical bundle of Ts p,» to the components of its boundary
divisor is big and numerical effective. Finally, we prove the main theorem in §3.3.

For the reader’s convenience, we recall in Appendix A the construction of the local coordinate charts used
in this paper (the Van der Waerden representation) as well as an example illustrating this. In Appendices B.1
and B.2, we provide a detailed proof of the numerical formulas for the restriction of the anticanonical bundles,
whenp=n-sors.
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2 Basic construction and properties

In this section, we will recall some notions and results in [8].

2.1 Construction of T, »

Let G(p, n), 0 < p < n, be the Grassmann manifold consisting of complex p-planes in the complex n-space.
Each point x € G(p, n) one to one corresponds to an equivalence class of p x n non-degenerate matrices,
where the equivalence relation is induced by the matrix multiplication from the left by the elements of the
general linear group GL(p, C). A matrix representative x of x is a matrix in the corresponding equivalence
class.

Define an index set I, » by

Ipn = {(i1, -+ ,ip) € ZP|1 <ip <ipg <o+ <ooo<ip <n}. )

Denote by [--+, zp, -] Ie1,, the homogeneous coordinates for the complex projective space CPN»" where

Np,n = zﬁip)! - 1. Foreach index I = (iy,--- ,ip) € I,» and a matrix representative x of x € G(p, n), denote
by P;(x) the determinant of the submatrix of x consisting of the i tlh, cee, if,h columns. The Pliicker embedding

of G(p, n) into CP»" can be given by

¢: G(p, n) — CPNrn

) . )
X — [' °c )PI(X)’ °c .]IEHp,n
For 0 < s <nandO < k < p, define index sets I¥ , , by
]Ié‘,p,n = {(iy, - ,ip)eZp|1sip <evr<lipy1£8;8+1<iy<ipyq<--+<iysn}. @)
For each O < s < n, there is a partition
p
Tpn=| | T8 pom - )
k=0
Consider linear subspaces of CP"» as follows.
(CIP’NQP-" = {[ ,ZI,-'-]IE]IP’H € CPNvn z1=0, Vlig ]Ié‘,p,,,} ,0<kz<p, 6)

where N_Lf,p,n is the cardinal number of the set ]Ié‘, p,n Minus 1; by a slight abuse of notation, we denote the cor-
responding homogeneous coordinates by [--- , z7, - - -] Iet, - Recall the following projection (rational) map

F¥ by dropping the coordinates whose indices are not in ]L’é, oo

FK . CPYor ——s CPNorn
@

[ ,ZI,"']Ie]I,,,,. P e :ZI,"']IG]]k

S,p,n

We make the convention that CPNern is a point and F¥ is the trivial map when Néﬂp,n = 0, -1. We can thus
define a rational map Ks,p,n : G(p, n) --» CPNen x CPYrn x ++ o x CPNewn by

Ks,p,n = (e, F(s)Oe;"' ,Flsjot); (8)
or equivalently,

Ko@) = (I, PiD, - Jren, [+ o P@, oD ool Pi@, Ty ) ©)

Definition 2.1. Assume that 0 < p < nand O < s < n. Let Tsp,»n be the scheme-theoretic closure of the
0

birational image of G(p, n) under Ks p.n in CP¥rn x CPNswn x - - x CPNown, We call T . the canonical blow-

up of G(p, n) with respect to the parameter s.
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Example 2.2 ([6]). Denote by [x1,---,Xs, Y1, ,¥n-s] the homogeneous coordinates for the projective
space CP"". Then 7. 5,1,n is the blow-up of CP"! along the union of the disjoint linear subspaces CP*"! and
CP"™1; K1, is given by

Ks,1,n([X1, oo+ s Xs, Y1, oo s yn=s]) = [X1, oo+, Xs, Y1,y Ynos] x [xq, o Xs] x [y, - ,yn-s]. (10)
T1,1,3 is the Hirzebruch surface 2.

Example 2.3. T, , 5, is the modular compactification of the reductive group GL(p, C) constructed by Kausz

(19D.

Take a subgroup GL(s, C) x GL(n - s, C) of GL(n, C) as follows.

2

g1 € GL(s,C),g, € GL(n-s, (C)} . (11)
Let B be a Borel subgroup of GL(s, C) x GL(n - s, C) given by

{5 )

Definition 2.4. Let G be a connected reductive group. An irreducible normal G-variety X is called spherical
if a Borel subgroup of G has an open orbit on X.

(12)

g1 € GL(s, C) is a lower triangular matrix ;
g2 € GL(n - s, C) is an upper triangular matrix [ ~

Recall that

Proposition 2.5 (Propositions 1.3 and 1.12 in [8]). Ts, p,n is a smooth spherical GL(s, C) x GL(n - s, C)-variety.
The complement of the open GL(s, C)x GL(n-s, C)-orbit in Ts p,n is a simple normal crossing divisor consisting
of 2r smooth, irreducible divisors as follows.

D13D£5""D;5D-{)D5""3D:- (13)

Each GL(s, C)x GL(n~s, C)-orbit of Ts,p,n one to one corresponds to the quasi-projective variety X ;- .y defined
by

wen= (NN N2\ Ul Ui 4

iel~ iel* 1sjsr 1<gjsr
jer jeI
where I, I'* are subsets of {1, 2, - -+ , r} such that
min(I7) + min(I") = r + 2. (15)

Here we make the convention that min(p)) = +oo. Moreover, the closure of each GL(s, C) x GL(n - s, C)-orbit in
Ts,p,n is smooth.

Definition-Remark 2.6. One can show that
r=min{s,n-s,p,n-p}. (16)
We make the convention that r is always referred to the above quantity in this paper.

Aline bundle L on a projective variety X of dimension n is called big if its highest self-intersection number (L")
is positive, and called numerical effective (or nef for short) if the intersection number (L - C) is non-negative
for any complete curve C on X.

We have that
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Proposition 2.7 (Theorem 1.22 in [8]). The anti-canonical bundle -Ks, , . of Ts,p,n is big and numerical effec-
tive. -Ks, ,, is ample if and only if r < 2.

According to Definition-Lemmas 2.11 and 2.12 in [8], the following isomorphisms among the canonical blow-
ups of Grassmann manifolds hold.

DUAL : {Is’p,n — ‘Ts’n—p’n and USD . {Is’p,n — ‘Tn—s’p’n N (17)

Remark 2.8. Without loss of generality, in the remaining of this paper, we can thus assume that 2p < n < 2s.

2.2 G-invariant divisors of T p, ,

In this subsection, we will give a more detailed description of the divisors D7, D3,---, Dy, Dy, D3, -+, D}
appearing in Proposition 2.5. For convenience, we denote by G the group GL(s, C) x GL(n - s, C) in the fol-
lowing.

Define an algebraic C"-action ¥s,p,» on G(p, n) by

ISXS 0 *
Ys,p,n(A) := ,AeC. (18)
o o A Iin-s)x(n-s)

We have a unique lifting ¥s p,n of s p,n from G(p, n) to Ts p,» (see Lemma 2.10 in [8]).
For O < I < r, define subsets V(p_,’l), V(+p71, ) and V(pfl’ D of G(p, n) in matrix representatives by

v . 0 X X is an I x (n - s) matrix of rank [; (19)
p-1.0 -~ Y 0/|Yisa(p-10xs matrix of rank (p - )
and
+ L 0 X X is an I x (n — s) matrix of rank [;
-1y -~ Y W/|Yisa(p-1) xs matrix of rank (p - I)
(20)

_ Z X
\Y% =
{7 3)

We have the following explicit Bialynicki-Birula decomposition (see [2]) for Ts,p,n.

X is an I x (n — s) matrix of rank [;
Y is a (p - ) x s matrix of rank (p - 1)

Lemma 2.9 (Lemma 4.9 in [8]). There arer + 1 connected components D,_; , 0 < I < r, of the set of the fixed
points of Ts p.n under the C”-action ¥s,p n, such that the following holds.

(a). Rsyp’n(D(pfl,l)) = V(pfl,l)’ O<l<r.
(b). For0 <l <r, thereis a fibration sz—l,l) (resp. D(_p—l,l)) over Dy,_; ;) such that

r -1

T + + T a— - -

D \ P10 = L Dot (feSP- Dot \ P = L D(p—i«k)) : (21)
k=1+1 k=0

Lemma 2.10 (see Definition 4.10 and the proof of Proposition 1.12in [8]). For 1 < k < r, D; (resp. Dy) is the
Zariski closure of the manifold D, ;. ;) (resp. D&_Hk_l’r_kﬂ)) .

2.3 B-invariant divisors of T p, ,

To describe the cone of effective divisors of Ts p,n, we need to find its B-invariant divisors. In this subsection,
we will recall some important properties of the B-invariant divisors of Ts p,n.
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For O < j < r, define irreducible divisors b; of G(p, n) by
bj := {xe G(p,n)\PI}.(x)=O, Li=(s+j,s+j-1,---,s-p+j+ 1)6]1’;,1,,,,} . (22)
Let B; C Ts,p,n be the strict transformation of b; under the blow-up Rs,p,n : Ts,p,n — G(p, n). Notice that
whenp =n-s,B, =D;;whenp =s, By = D;y.
Recall that

Lemma 2.11 (Lemma 6.7 in [8]). WhenO<j<r,
j
Bj = (Rs,p,n)" (Og(p,m(1)) Z(r j+1-0-Df =) (+1-1-Dj. (23)
If p = s (resp. p = n — s) we should modify (23) for Bq (resp. By) as follows. When p = s,
Bo =D; = (Rs.p.n)" (Og0p.m) (1)) Z(H 1-1i)-Df (24)
whenp =n-s,
By =D; = (Rs,p.n)" (Og(p,m)(D)) Z()’+ 1-1)-Dj (25)

And

Lemma 2.12 (Lemma 3.3 in [8]). If B; contains a non-empty G-orbit of Ts,p,n, then either p = n - s, j = r and
Bj=By=D;,orp=s,j=0andBj = By = D;.

Immediately, we have that

Lemma 2.13. T p n is regular in the sense of [1]. Precisely, Ts p,n is smooth and spherical without color (i.e.
every irreducible B-stable divisor containing a G-orbit is G-stable).

For a smooth projective manifold X over C, the group Z;(X) of i-dimensional cycles on X is the free abelian
group on the set of i-dimensional subvarieties of X; the group of i-cycles rationally equivalent to zero is the
subgroup of Z;(X) generated by the cycles (f) for all (i + 1)-dimensional subvarieties W of X and all nonzero
rational functions f on W; the Chow group A;(X) of i-dimensional cycles on X is the quotient group of Z;(X)
by the subgroup of cycles rationally equivalent to zero.

Brion ([5]) proved that

Lemma 2.14. Let X be an irreducible, complete spherical variety of complex dimension n. The cone of effective
divisors in A,_1(X) ®7 Q is a polyhedral convex cone generated by the classes of irreducible B-invariant divisors.

We determine the cone of effective divisors of Ts p,n by

Lemma 2.15 (Lemma 3.2in [8]). Let © be an irreducible B-invariant divisor of Ts p n. Then

D G{DI,DE,"' ,D;,D-{,DE,"' ’D;—’BOsBla"' ,Br}- (26)

Remark 2.16. Since by, is biholomorphic to the infinity hyperplane section of G(p, n) which is the closure of
a complex Euclidean space, By, is irreducible and B-invariant.

Proof of Lemma 2.15. For the readers’ convenience, we repeat here the proof given in [8].
Assume that © is B-invariant but ® ¢ {D{, -+, Dy,D},+-- ,Dy,Bo," ,B,}. Denote by 0 the image of D
under Rs p ». It is clear that 9 is a B-invariant divisor of G(p, n), for the exceptional divisor of Rs p,» is contained
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in the union of the G-stable divisors. Hence, for 0 < j < r, P, # Oon? (see (22) for the definition). We can
verify that 0 contains a point a with a matrix representative a defined by

[ I [
a::= (Opx(s_p) } Ipxp H Ipxp } Opx(n_s_p)> when r = psn-s, (27)
[ I [
or
[ [ "
i [ Orep | Trr | Orc(p-n ! Ier ) Whenr=n-s< p. (28)
O(p—r)X(s—p) \O(p—r)xr I I(p—r)X(p—r) I O(p—r)xr

Then a is in a dense open B-orbit of G(p, n), which is a contradiction.
We complete the proof of Lemma 2.15. K.

3 Semi-positivity of the restriction of the anticanonical bundles

Throughout this section, we assume that r > 3 and 2p < n < 2s.

3.1 Geometric structure of the cone of effective divisors of D)

For1l<j<randO < m < r, denote by B;] (resp. B}}) the restriction of the line bundle By, to D; (resp. D;).
Notice that when Bm # D; (resp. Bm # Dj), we can identify B} (resp. B}}) with an effective divisor of D;
(resp. Dj*), that is the scheme-theoretic intersection of By, and D; (resp. Dj*). For 1 <i,j < r, denote by DZ the
restriction of the line bundle Dj to Dj. Similarly, when D; # D}, we can identify D7} with an effective divisor
of Dl?, that is, the scheme-theoretic intersection of D}? and Dj. We make the convention that when the indices

*i

are out of the above range, D; and Bfni represent the trivial line bundles.
We prove the following crucial lemma similarly to Lemma 2.15.

Lemma3.1. Let D be an irreducible divisor of D; (resp. D]-* ), 1 <j<r If® is G-invariant, then

i pI . i p - -j
De {D_]_s D—Z’ e ,D_l'"" ’D_r’D+(r+2—j)’ D+(r+3—j)’ e aD+r}
— (29)
(reSp' De {Dijl’DiJZ’ ’D:;'"“ ’D:]”Dt](r+2—i)’Di](r+3—f)’“. ’Dj)r}> '

If © is B-invariant but not G-invariant, then for p # n—s and p # s, D is an irreducible component of one of the
following divisors,

{BJ.BJ, - BJ} (resp. {BY.BY,--- BJ}); (30)
forp =n-s <s,® is anirreducible component of one of the following divisors,

{Ba]y BI]‘)"' ’B;il} (resp' {B(-;]a Bij"' )B:11}) 5 (31)
forp =n-s=s, 9 is anirreducible component of one of the following divisors,

{BV.B, - B} (resp. {BY,BY,-- B }). (32)

Proof of Lemma 3.1. (29) follows from Proposition 2.5.
The remaining of the proof is similar to that of Lemma 2.15.

Firstly, assume that p # n - s or s. Without loss of generality, we can consider divisors of D;, 1 < j < r;
the case of D]-+ is similar, and we omit it here for simplicity.

Recall that D7, Dy and By} are Ms,p,n, Dm, and Bm defined in [8], respectively. (30) is exactly Lemma
6.16 in [8].
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In what follows, we will assume 2 < j < r and proceed to prove (30) by contradiction. Suppose that D is
B-invariant but not G-invariant, and © ¢ {BBJ’ BI’ yeee B;’ }. Let a be a generic point of D; that is, a is not a
pointof D7, D2, +++, D7, -, D3, D 5 5. D 5 .-+, DI By, BY, -+, B/ Denote by  the image of
aunder Rsp.n : Ts,p,n — G(p, n). Then a has the following matrix representative,

~ Z X
a= (Y O> , (33)

where Xisan (j — 1) x (n — s) matrix of rank (j - 1) and Y isa (p - j + 1) x s matrix of rank (p — j + 1). Recall
(22) that

bj—l = {XG G(pyn)|PIj_1(X):Oa Ij—l =(S+j_135+j_2"" ys_p+j)} H (34)

- + nt

by (23), thePreimage of ij_1 under the map Rs,p,n is theunion of Bj 4, D_y, D5, -+, Dj_4, D1, D3, -+, D:—i+1'
Therefore, a ¢ bj 4, Py, (a) # 0, and we can conclude that a has a matrix representative as follows.

\ I \
i=( 20 % ilivew X (35)
Y I(p—]'+1)><(p—]'+1) I 0 Y
~—~ ~—~
s—p+j-1 columns (n-s-j+1) columns
where

Z11 o Za(s-pe-1) Xisej) "7 Xin Vit 0t Vjls-p+j-1)
7 = . : , X = . . , Y= : : . (36)

21ttt Zi(s-p+j-1) Xis+)) **° X Yp1  **t Vp(s-p+j-1)

By the Van der Waerden representation presented in [8] (see Appendiex A as well), we can take a holo-
morphic coordinate chart (AT, (]]-T_l)‘l) for r € Jj_; (see (118) for the definition of J;_;) around a in Ts,p,n,

such that the projection Rs,p,n in the local coordinates (5( .Y, §>1, e, §P> (see (119), (120) and (121)) takes
the following form.

RCR TR

p k -
> ( I1 aim) B Qi Oy TG X (37)
k=p-j+2 \ t=p-j+2
B pj+2 [ k r ’
Y Ipjepivy  Opjrng-n 2 bij | - &) - Qk
k=1 \t=1
where £ and Q; are given by (123), (124), (125) and (126).
Claim. We can choose the index 7 € J;_; in the above as
i i+1 cee i—1 i—2 - 1
= P _y _p : (38)
s+j s+j+1 -+ s+p s-p+j-1 s-p+j-2 -+ s-p+1

Proof of Claim. Following [8], we define special indices Ik,I,:,Iﬁv,I’,j; € H’;,p,n as follows. For O < k < p, define
Ii:=(s+k,s+k-1,--- ,s—p+k+1); (39)
for1 <k <p-1,define
I; =(s+k+1,s+k-1,s+k-2,---,s-p+k+3,s-p+k+2,s-p+k); (40)
forO<ks<p,s-p+k+1<pu<s,and1<v<s-p+kdefine
I’ljv:=(s+k,s+k—1,---,,ﬁ,---,v); (41)
forO<ks<p,s+1<us<s+k,ands+k+1<v<ndefine

I’,j:,:=(v,s+k,s+k—1,---,ﬁ,---,s—p+k+1). (42)
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It is clear that the coordinate b, ;, vanishes on ©. Recalling the proof of Lemma 3.11in [8], by (23) we can
compute the defining equation p, for B,’,{ in the local coordinate chart (AT, (]]T_l)‘l) as follows.

Py, (T2 (X7, B BP))
i ml_l[+l bm—i+27t
1 icjt
pji-1 =13 @)

Py, (I74 (%, v, B, ,ﬁl’))
Pm = FED , Osmz<j-2.
me—Hl
t=p-j+2 e

pm L jemsr;

In particular, we have that
pm(a) #0, O<sm=<r. (44)

Therefore, by Claims II in the proof of Lemma 3.11 in [8], we have that

Property L. For each I € I}, », 0 < m < p, the following rational function is nonzero at the point a,

Py (17 (X7, B, ,ﬁp))

—— : (45)
P, (17, (X, V. B, Br))
Denote by 7 the index
j ]+1 e p ]_1 ]_2 e 1 (46)
s+j s+j+1 -+ s+p s-p+j-1 s-p+j-2 -+ s-p+1]°

Denote the local coordinates of the holomorphic coordinate chart (ATO s (]].Tj’l)‘l) as follows (see Appendix A
as well).

Xo,1(s+)) ' Xo,1n Yoji  * Yo,j(s-p+j-1)
Xo := : : and Y := : : ; (47)
Xo,i(s+j) “°°  Xo,n Yop1 **° Yo,p(s-p+j-1)
Bl._ (1) (1) 1) 1) (1) (1)
Bo:= (bo’f(5+i)’ é’o,j(s+j+1)’ '{O,]‘(s+j+2)’ TTT 50,500 50,(j+1)(s+))? ‘{O,(j+2)(s+j)’ o é’o,p(s+j)) ’

2._ (b . {(2) {(2) ¢
0- 0,(+1)(s+j+1)* 50,(j+1)(s+j+2)* 90,(j+1)(s+j+3)’ > 50,(+1)n’
(2) (2) (2)
€O,U+2)(s+j+1)’ 50,(i+3)(s+j+1)’ B go,p(s+j+l)) ’ (48)
Bt ._ (p gD ) D))
0 . 0,p(s+p)? S0,p(s+p+1)? 90,p(s+p+2)° > 50,pn ’
B2 .- (a 0, £ kD) D)
0 . 0,(j-1)(s-p+j-1)* S0,(j-1)1° 0,(j-1)2° * 90,(j-1)(s-p+j-2)°
054D D i) )
0,1(s-p+j-1)° 20,2(s-p+j-1)° > 20,(-2)(s-p+ji-1) )

p-j+3 . _ (p-j+3) p-j+3) ... z-j+3)
ﬁo = (aO,(j—Z)(s—pﬂ—Z)’ 50,(1'—2)1’ 0,G=2)2° """ 2 90,(j~2)(s-p+j-2)°
(p-j+3) (p-j+3) ... f-i3)
0,1(s-p+j-2) 70,2(s-p+j-2)’ > 50,(-3)(s-p+j-2) ) >

(49)

o ) ) )
E‘g o= (aO,l(s—p+1)’ 5((){711’ 5((){)12’ Tt é‘(()1,11(5—17)) ’
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Based on Claims I1I, 11T, 111", E}I, andll)l"" in the proof of Lemnﬁa> 3.11 in [8], we can make the change of
coordinates between (Xo, Yo, B, -+, Bg) and (X, Y, El, cee, Bp) as follows.

P, (rjf_l ()? Y, B, ,?P))
R A (e (A TR D
P, (T,-T_l ()? 7,81, ,?P)) Py (r}_l ()? Y, 81, ,?l’))
(e (121755 )

j+lsmsr=p;

bO,m(s+m) =

~ - (50)
a P (7, (BT )
0,(-1)(s-p+j-1) = = = ;
by (r}.{l (X, Y, B1,-.- ,?p))
Py, (1, (X VB BP)) -y, (M, (R VB BY))
o, I(s-p+) = — 2 » l<l<j-2
(7 (72 (%7, 800 89))
Forlsmsp-j,s—-p+j+msus<s,andv=s-p+k,
P (j—-1+m) (I‘T, (jv(’ ?9 ) ﬁp))
(m) L U ; 1)
0,(u-s+p)(s+j-1+m) (_1)(j—1+m)(p—j+1—m)+y—s+p—j+1—m . PIm ([‘]T_l ()~(, ?’ ?1, ey ?p)) ’
forlsmsp-j+1l,u=s+j-1+m,ands+j+m=svs<n,
(m) PI;S’C“'”’* (F}’l (5{’ ?’ o ﬁp)) (52)
0,(j-1+m)v (-1)U-1+m)(p-j+1-m) . Py, (F]'T—l ()?, 17’ ?1, e Ep)) '
Forp-j+2<ms<p-1,s+1l<su<s+p-myandv=s+p-m+1,
Py (I7, (X, 7, , BP
m - A ; (53
0,(u-s)(s-m+1) (~1)mp-m)+s+p-m+l-p . P, (F;'T—l (5(, 17’ ?1, cee, ﬁp)) ’
forp-j+2<m<p,y=s-m+1l,andl<v<s-m,
» Py (17, (11,0 7)) "
_ = . — . 54
0,(p-m+1)v (_1)m(p—m) . le (thl (X, Y, ﬁl, cee ﬁp))
Fors-p+j<pu<sandl<vss-p+j-1,
Yo,(u-stpv = (_1)k(p—k)+y—s+p—l ) P[ff;l) (F]T—I (}2’ Y, ?p)) > (55)
fors+1<pus<s+j-1l,ands+j<vs<n,
Xogu gy = CDIFVFVII L py (1 (X7, 7). (56

Then by (44), it is easy to verify that the point a has well-defined local coordinates in the holomorphic
coordinate chart (ATO, (]]701)‘1).

We complete the proof of Claim. W

According to Claim, it is easy to verify that the action of the Borel group B on a has a dense orbit in D; .
This is a contradiction. Hence, D is an irreducible component of one of the divisors in {B(")j R Bf . B;j 1.

By a similar argument, we can prove (31) and (32) whenp = n-s < sand p = n - s = s, respectively.

We complete the proof of Lemma 3.1. |l

Remark 3.2. B;! (resp. Bil) is irreducible if it is a proper subvariety of D! (resp. D*!). When 2 < j < r, B,
(resp. B;?) consists of two components.
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Proposition 3.3. The interior points of the cone in An_l(D]T) ®7 Q (resp. An_l(Dj*) ®7 Q) generated by

5 pi Ei 5 p
{D,l,D,z,-'- s D, +++, D5, D

J ... DJ.BJ BT ... BJ
j +(r+2—j)’D+(r+3—j)’ » Dy By, By, -+, By }

— (57)
+j +j +j + +j +j +i Bt Bt Ht
(resp. {D+1,D+2,--- ,DY, -+, D, DY, 5, DY 5 - DY, BY L BY By })

are the interior points of the cone of effective divisors of D; (resp. D} ).

Proof of Proposition 3.3. Without loss of generality, we only consider the case D; in the following. Take the
irreducible decomposition of B’;{ as follows.

"
B;nj=2ﬁ;,{,a-1";,{,a, O<msr, (58)
a=1

where n;{ and ﬁ;,{,a are positive integers if B,}{ is nonempty. By Lemma 2.14, the cone of effective divisors of
Dj is generated by

5 p .- i p - -j
{Dfl’ D*Z’ MY D‘j’ Y D—r’ D+(r+2_i)a D+(r+3_]~)a Y D+r’
(59)
F(;Zp'“ ,F;n(—)i,rzp"' ’F;fnf’“' ,F;,]1"" ,F;,}n;,-, }
Then, Proposition 3.3 follows. l
3.2 Bigness of the restriction of the anticanonical bundle
Recall the following result.
Lemma 3.4 (Lemma 6.7 in [8]). Whenp <n-s<s,
p-1 p p
Ky, =—(s—p+1)-30—2ZBj—(n—s—p+1)-B,,—ZD;—ZD;; (60)
j=1 i=1 i=1
whenn-s=p<s,
p-1 p p
Ky,,,=-(s-p+1):Bo-2) Bj-> Di-» Df; (61)
j=1 i=1 i-1
whenn-s<p<s(r=n-s),
r-1 r r
Ky, =—(s-p+1):Bo-2> Bj-(p-r+1)-B,—> Di->» Dj; (62)
j=1 i=1 i=1
whenn-s=p-=s,
p-1 p p
Kg,,,=-2> Bj-> Di-Y Di. (63)
j=1 i=1 i=1
Computation yields that
Lemma3.5. Let1<j<r. Whenr=p <n-s<s,wehave that
. 771 . . . .
- Ky, |- =(s-p+1)-BJ+2) Bl+(n-s-p+1)-B/+B’-B
m=1 (64)

r r
+Y 07+ Y b,

i=j+2 i=r+2-j
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j-1
i _ B - ;
ZD B._ Bl +D 55, 25j<m, (65)
i=1
D_](1+1) B K 1t 2B_) B]._il , l<jsr-1. (66)
And
1 .
K, oy =(s =p+1)-BF + Z +(n-s-p+1)-BY+ B -B),
m (67)
+1 +j
DTS T
i=j+2 i=r+2-j
j-1
H_ + + i
ZD+i_ r+2—]_Br+1]+D(r+2 -’ 2<js=r, (68)
i=1
+ + + H+i .
D+1(,'+1)__Bri1 ]+2B’ —Brfl_j, 1<jsr-1. (69)

Notice that here we use the convention that B;T, and B*", are trivial.

Proof of Lemma 3.5. Since D7, D3, -+, Dy, ;
clude the following formulas for line bundles.

have empty intersection with D;, by Lemma 2.11 we can con-

r

By = Rsp.n)" (O6(p,m(1)) Io; - > (r+1-0)-D7,
i:r+2—j

= (Rsp n) (OG(p n)(l) |D' Z (r-i- D ] :1 s
i= r+2—1 (70)

2 = Rspn) (O,m(D) I - Z (r-1-i)-D}-2D7 -D7,,

i=r+2-j
B, = Rspn)” (064p,m(D) Ip; =D, 5~ G- 2D =G -3)D7, -+ =D, , (71)
B7, = Rspn)” (06(p,m(1D) Ip; = (G- 1D =G -2)DT, - =D, ., 72)
B;] = (Rs,p,n)* (O(;(p,n)(l)) |D}T —jD:]1 -G- 1)D:]2 —eee = 2D:]().71) - D:; , (73)
B, = Rspn)” (O6(p,m(1) Ip; =G+ 1)D7) = jDF =+ -2D7 - D7, ), (74)

. ' . , (75)
BY = (Rs,p,n)" (O6(p,m()) Ip; =1DZy = -+ = (r+1-j)D7~-- - D
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Then (65) and (66) follow from (71), (72), (73), and (74) directly.
Subtracting (74) from (73), we derive that

D2+ D7y +-e+ DYy gy + D5+ Dy = B - B, (76)
Restricting (60) to D; and plugging in (76), we have that
r-1
~Ks,,,lp; =(s-p+1)- B’+ZZB’+(n s-p+1)-B/
m=1
j+1
DIEES SLILS oE ¥

i=j+2 i=r+2-j (77)

-1
=(s—p+1)-B5i+2ZB;,{+(n—s—p+1)-B;j+B’ B

j+1
m=1
r . r X
FYde Y b
i=j+2 i=r+2-j
Similarly, by Lemma 2.11 and the fact that D7, D, - -+, D;;_; have empty intersection with D}, we can

conclude that

—(Rsp n)" (OG(p (1) |D+—Z(r+1 i- DH,

i=1

r-1
BY = Rs,p,n)" (06p,m(1)) Ip; - > - DY, (78)
i=1
j+1
, 1 5= (Rsp n) (OG@ n)(l) ‘D* Z(] +2-1i)- D+1 s (79)
i=1
= Rs,p.n)" (600, (1)) I; - Z(, +1-i)-D7, (80)
i=1
j-1
B, ;= Rsp, ) (O6p.nM)| D! -> G- DY, (81)
i=1
j-2 ) )
r+2 -j = (Rs,p, ”) (OG(I? n)(l) ‘D+ Z(] 1-1) D:JI _Di](r+2—j) ’ (82)

i=1

. r . (83)
B:—] = (Rs,p,n) (OG(p,n)(l)) |D}+ - Z (r +1- l) * Dt]l .
i=r+2-j
Then (68) and (69) follow from (79), (80), (81), and (82) directly.
Subtracting (79) from (80), we derive that
DY +D)+---+D},  +DJ+D] =B B, .. (84)
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Restricting (60) to DI-+ and plugging in (84), we have that

r-1
~Ks,,.|p; =(s-p+ 1)-BY +ZZB;{ +(n-s-p+1)-BY
m=1
j+1 r ) r )
DIIIDILID SEE
i=j+2 i=r+2-j
. r_l . . . . (85)
=(s—p+1)-B$’+22B;{+(n—s—p+1)-B;"+B:ﬂj—B21_i
m=1
r .
+ Z D” + Z D7
i=j+2 i=r+2-j
We complete the proof of Lemma 3.5. B
Lemma3.6. Let1<j<r.Whenr=n-s < p <s,we have that
. r71 . .
‘KTs,p,n|D,-‘ =(s—p+1)-36]+ZZB;1’+(p—r+1)-B;’+B J B}jl
" (86)
+ Z D+ Z D7,
i=j+2 i=r+2-j
j-1
1 j ;
D B D+(r+2 e 2<js<r, (87)
i=1
D7, =-B/ +2B7 -BJ, 1<jsr-1. (88)
And
. r_l . . . .
K, lp; =(s-p+1)- By +2) Bil+(-r+1)-BY+ B.-B]._,
) o (89)
>0 > o,
i=j+2 i=r+2-j
j-1
+o_ +j +j .
ZD+]1' - Br+2—] - Br+1 5t D—(r+2—]) » 25jsT, (90)
i=1
+j + +j .
D+1(i+1) B;'il_] + 2B ’ Brfl_j, 1<jsr-1. 91)

Notice that by convention B;!, and B* are trivial.

Proof of Lemma 3.6. The proof is exactly the same as that of Lemma 3.6 by setting r = n — sinstead of r = p
For simplicity, we omit it here. Ui

Lemma 3.7. Letr = n-s = p < s. we have the following identities. When 1 <j<r-2,

r-1
-Kg,,.lp; =(s-p+1)- B’+ ZB;{+BJT’ ]+1+ZD] Z D+1’ (92)
m=1 i=j+2 i=r+2-j
whenj=r-1orr,
. r-1 . . r . r )
_KTs.p,n|D;:(S_p+1)'36]+223;r{+321+ZDZ* > Dbl (93)

m=1 i=j+2 i=r+2-j
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j-1
J_-pJ _pJ -j Py
ZD—i - B}'—Z - Bj—l + D+(r+27)') » 2s5)sr3

i=1

j+1°

D
—B" +23‘1 j=r-1

—B’j+2}§’ Bl , 1<jsr-2
—G+1) © .

Similarly, when1<j<r-1,

r-1
Ky, ,.lp; (s =p+1)- By +2> Byl+ B;’fi -B7 Lt Z DY+ Z D
m=1 i=j+2 i=r+2-j

whenj=r,

-1

r r
—I<j‘s’pyn|Dl_+ =(s-p+1)- Es] Z BJ{ 8’ + Z D+ Z D7,

m=1 i=j+2 i=r+2-j
. j + .
ZDH' _ { r+2—] - Br+1_1 D—(r+2—j) , 3<js< r.
+i +] +l . ;
= B0 o2
) Y _pY .

DY Br+1}+2B _B,,l,}-, 2<jsr-1

+(G+1) DJ_'J + 2B+1 - B:il—j s j=1

Notice that by convention B;!, and B*} are trivial line bundles.
Proof of Lemma 3.7. See Appendix B.1. 1

Lemma3.8. Letr=n-s=p=s.Whenl<j<r-2,

r-1

K‘ISP" =2 1 ]+1+ZD]+ ZDH’
m=1 i=j+2 i=r+2-j
whenj=r-1lorr,
r-1 . . r ) r .
~Ks, . Ip; =2 > Bi+B),+> D+ Y DI
m=1 i=j+2 i=r+2-j
j-1 h-J -j ;
D - {Bj_z' B +D+(r+2 ) 3<j<sr
—i ] . .
i=1 B} D+(r+2—1) > j=2
. -DJ + ZB" B}‘jl , j=
-5 -j - _pJ ;
D_(].+1) = —B Lt ZB B]Jr1 , 2<jsr-2
—B111+ZB]’, j=r-1

Similarly, when 1 <j<r-2,

r-1 r
_ Hhti ., DH +] +] +j.
_KTS’H’H|D]_+—2§ B,,{+Br1j— ,]1+§ DY+ § D

m=1 i=j+2 i=r+2-j
whenj=r-1lorr,
-1 r r
_ - R+ + +
K,,.Ip; = Z n+BY+ 3 DU+ S DY
m=1 i=j+2 i=r+2-j
B7. _-BJ 4+DY 3<j<r

Jj-
Z { r+2—) r+l-j —(r+2-j)° .
-j . ’
+
i=1 -B

r+1-j D+(r+2—j) ’ )=

N~
N

— 429

(94)

(95)

(96)

97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)
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R+ Bt + _
. —B.r_l._1 + 2Br_}. - D._r s j=1
+] _ Htj Htj Htl .
D+(j+1) = _Br—j—l + 2Br‘_j =B, 2<jsr-2. (107)
B p :
2Br—j_Br—j+l’ j=r-1

Proof of Lemma 3.8. See Appendix B.2. i

Proposition 3.9. Whenr 23 and 1 < i <, the restriction of the anticanonical bundle -Ky, , , on Dj is big and

nef.

Proof of Proposition 3.9. By Theorem 2.7, -Ky, , , is nef. It is clear that the restriction Ky, , | p: On Dj is nef
as well.

Since Dj is projective, each interior point of the cone of effective divisors of D]? represents a big divisor. There-
fore, by Proposition 3.3, it suffices to show that -Kg, , | p; can be written as a positive combination of the
following divisors.

o~

+j +j 1j
{Dtjl’Dtlz"" ’sz'”"

+j +j +j +  HE P Kt
) Dira DZF(r+2—]')’ D:!:(r+3—j)’ ] D:Fr! BO ’ B1 P Br } (108)

Assume that r = p < n—s < s. By Lemma 3.5, we have that

r-1
~Kg,,,lp- =(s-p+1)-BJ +2) Bjl+(n-s-p+1)-B/+B/-B],
m=1
r . r .
£ D5+ > D
i=j+2 i=r+2-j (109)

j-1
(B9 B +pI
+61 ZD—i - (Bj-z B+ D+(r+2—j))

i=

+ 68, (D:’(M) - (—B}le +2B7 - B]le)) .

By choosing suitable 81, §,, we can conclude that —Krfslp’n | D: is in the interior of the cone of effective divisors
of D for 1 <j < r. Similarly,

r-1
K, ,,|p; =(s —p + D-Bj+2> Bl+(n-s-p+1)-BY+B,-B/ |,
m=1

+iD:’l:+ i D"

i=j+2 i=r+2-j (110)

-1
+ _ (Rt _ Rt +j

+61 Z D3 (Br+2—j Br+1—j + D—(r+2—j))

i=1

+52 (D K (B fa* 2B, - B il*i)) '

By choosing suitable 61, 65, we can show that -Ky , | D! is in the interior of the cone of effective divisors of
Diforl<jsr.

Similarly, we can prove that ~Ks, ,.|p; i bigfor1 <j<rwhenr=n-s<p,r=n-s=p<s,or
r=n-s=p-=s.

We complete the proof of Proposition 3.9.

3.3 Proof of Theorem 1.2.

The proof is similar to that of Proposition 4.2 in [1]. When r < 2, Theorem 1.2 follows from [1] directly, for Ts p,n
is regular by Lemma 2.13 and ample by Proposition 2.7. In what follows, we will assume that r = 3.
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Recall the notion of the action sheaf of a spherical variety as follows. Let G be a connected reductive
algebraic group over C. Let X be a spherical G-variety with boundary 0X, that is, 0X = X\Q where Q is
the open G-orbit of X. The action sheaf Sy of X is the subsheaf of Tx made of vector fields tangent to 0X.
Combining Theorem 4.1 in [11] and Proposition 2.5 in [1], one can show that H(X, Sx) = 0 for any complete
regular variety and any i > 0. By Lemma 2.13, we have that

H'(Tspn, Sg,,,) =0, i>0. (111)
By Proposition 2.3.2 in [1], the following exact sequence of sheaves holds.
r r
0— STS,p,n — ‘I‘J’s,p,n — @ O(J's,p,n (Dl_) ®O(Ts,p,n) OD" @ O(‘Ts.p,n (D;—) ®O(Ts,p,n) OD:' —0 (112)
i=1 i=1

Since D is smooth, Oy, . (Dj) D0 (T,pn) O0; ¥ Ni where N is the normal bundle of Dj in Ts,p,n. By the
adjunction formula, N} = -Ksy, , .|p: + Kp:. By Proposition 3.9, -Ks, , [p: is big and nef. Then the Kawamata-
Viehweg vanishing theorem yields that

H(D:,Ni)=0, j>O0. (113)

Taking the long exact sequence of (112), we can conclude by (111) and (113) that

H(Tspn, Ty,,,) = <EB H (D}, Ni)> ¢ (EB H (D}, N,-*)) =0,j>0. (114)

i=1 i=1

We complete the proof of Theorem 1.2. Nl

A Holomorphic Atlas

Assume n < 2s,p < 5, and I < min{n - s, p}. Let U, be an affine open subset of G(p, n) defined by

Z! 0 Ing'x
v=1 (2] ) b (115
Y i Iy peppn O W
~~ ~~
-p+l columns (n-s-1) colum:

and equipped with the holomorphic coordinates

Z11 "t Zi(s-p+D) Xi(s+l+1) "7 Xin
Zw=1 1 . : , X:= : RV , (116)
211t ZY(s-p+l) Xis+1+1)  *°° XIn
Yarnr 000 Y1) (s-p+D Wir1)s+l+1)  *°° W+Dn
Y := : : , W= : : . (117)
Yp1 te Yp(s-p+) Wp(s+l+1) e Wpn

Following Sections 3.2 and 3.3 in [8], we define the following holomorphic atlas { (A", (]{)‘1)} for
R;i,,n (U;) (the Van der Waerden representation).
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A.1 Thecasep <n-

For 0 < [ < p, define an index set J; by

l+1<iy<pforl<k=<p-1;
(1.1 i e i i) l<iy<lforp-l+1<k<p;
Jp = R, P P s+l+l<jy<snforl<k<p-1; . (118)
Jv J2 vt dpt P ) 1< <s—p+lforp-l+1<k <p;
iy, # ik, and ji, # ji, for ky # ka.

Associate each 7 = (}ll ;2 o ]l,p > € J; with a complex Euclidean space C?"P) equipped with holomor-
A

phic coordinates ()N( ,Y, Bl, cor, B ) defined as follows.

Xi(s+l+1) 77 Xin Yarmr trr Yss-pr))
X := : : and Y := : : ; (119)

Xis+1+41) " XIn Yp1 te Yp(s-p+D)

fort<ksp-1,

k._ (] (k) .. £ ) . 20 . (k)
Bl (bl"]k’gik(5+l+1)’€ik(5+l+2)’ i S S S

(120)
(k) (k) (k) .. (k) .. (k) AU (O
é‘(l*-l)]k é'(l*-Z)]k '{1111( {flzlk é’lk]k é‘p}k) ’
forp-l+1<k<p,
k (k) L), (k) (k) o) . (k)
ﬁ (alk]k ’ é'kl ’ { ix2? flk]p 11’ flk]p 12’ glk)k '{lk(s—pﬂ)’
(121)
(k) g . (k) (k) . (k) . (k)
'flik gzlk glp wijk’ éylp w2ji’ flklk gl]k > ’

The holomorphic embedding J7 : CPIP) _ g pn < CPNon x CP¥opn x + + - x CPMown is the holomorphic
extension of the birational map Ks,p,n o I'7, where K p,n is given by (8) and I : CP-P) _, U, is defined by

(7B B

p k ~
> ( I1 al-d-f>-5,{-9k Op(p-1) Iiq X (122)

k=p-1+1 \t=p-l+1

- p-l [ k
Y Ippe-n Op-na 2 (Hbi‘i‘> B O

Here 5 and Q, are defined as follows. For 1 < k< p - I, 5 := (vﬁl, e v’g) where

'fg;) te{l+1,1+2,--- ,pW\{i1, i2, "+, iy}
Vifz 0 te {il’iz"" 1ik—1} s (123)
1 t= it

and Q; := (w§+1+1, cee ,wn> where

f,(kkt) te{s+l+1,s+1+2,--- ,n\{j1,j2, " s ji}
We = te {jl)j27 et ’jk—l} . (124)
1 t=Jjk
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Forp-l+1<kz<p, 5 := (v’{,--- ,vf‘) where
(k) t 1.2, -+ W\ i cee g
‘ gtjk €{1,2, ’ }\{lpflJrl) lp-1+25 » Ik}
Ve = 0 te {ip—l+1» ip—l+27 ] ik—l} ’ (125)
1 t=1i;

X 'fl(zz(t) te{l,2,--- ’s_p+l}\{jp—l+1’jp—l+2,"' »Jik}
We = 0 te {jp—l+1:jp—l+29 e Jket) . (126)
1 t=jx

Let A" be the image of CP™P) under the holomorphic map J{. Then, { (AT, g {)’1) } is a holomorphic

atlas of R5}, ,(U)).

Tely

3 4 1 2

Example A.1. Consider Grassmannian G(4, 8), withs = 2,1 =2,and 7 = <7 8 1 2

) € J,. The holo-
morphic coordinates ()~(, Y, ?1, 32, 33, ?4) of C16 are

X = (x17, X18, X27, X28) s ¥ = (V31, V32, Va1, V42) »

(127)
B'- (b37, %), 1(,17)) , B2 - (bug), B?= (au, ?2), S)) , B4 - (az).
The holomorphic map I'S : C1® — U, is given by I'” ()?, Y, Bl, cee ?") =
ain aig rfg) 0O 0 1 0 X17 X18
ap - 5531) aj - (‘Sﬁ) : 531) +ap) 0 0 0 1 X27 X28 (128)
Y31 Y32 10 0 0 bs; b3; '5%)
Va1 Y42 01 0 0 bz s‘ﬁ? b3; '(51(‘17) : %) + byg)
A.2 Thecasen-s<p
For 0 <l < n - s, define an index set J; by
(in-s—1+1> in-s—1+2> *** » in-s) is a permutation of (1, 2, ---, 1);
i1 o+ dn-s )\ |Gi, o, jn_s_1) is a permutations of (s+1+1, s+1+2, -+, n); (129)
ji +++ jn-s)[lsjrss-p+lforn-s-l+1<ts<sn-s, jy #j, fort1 #t2;

I+1<it<spforl<ts<sn-s-1,iy #1i, fort; #t,

]l,l ]l,z o ]l,"_s € J; with a complex Euclidean space C?""P) equipped with the
1 2 e n-s

holomorphic coordinates <)~( ,Y, ﬁl, e, ﬁ”’s) defined as follows.

Associate each 7 = (

Xi(s+l+1) °°° Xin Yarn1 00 Y1) (s-p+D
X := : ST and Y := : : ; (130)
Xis+1+1)  °°° XIn Yp1 te Yp(s-p+D)
forit<ks<n-s-1,
ko (g &® O N ) N (N )
Bl (a’“k’ Sin(sets1)? Siylsnte2y "0 Sigs T Sy S T S

—_— — _ (131)
(k) Y 1 L Y < (9 U - C) B L GOl I
f(l+1)ik’ (1+2)j° ’ é11'1)'1(’ ’ 'fisz’ ’ ’ Sik]'k’ ’ é’pik) ’
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forn-s-1l+1<ks<n-s,

ko (g d0 20 0 00 L f L f L W
? T <a’k1k ’ '{ikl ’ {ikz ’ * Vipjn-s-1s1’ * Dijn-s-142” ? Vigj? ? Vig(s-p+l)’
/\ o - (132)
() gl k) o gl R 1 O N 9
é':ljk ’ ij ’ ’ firxfsfl+1]'k ’ ’ {infsfhzjk ’ ’ ’ £ikjk ’ ’ l]k >

The holomorphic embedding J7 : CPI=P) _y gy n < CPNon x CPNown x + -« x CP¥rn is the holomorphic
extension of the birational map Xs,p,n o I'], where I'] : CcP-P) _, U, is given by

7 (X7, 81, B -

n-s k ~
> ( I1 aitn> B Qi Opgpep I X (133)
k=n-s-1+1 \ t=n-s-1+1
~ n-s-1 k oT
Y Ip-pp-n Ot 2 t_l_ll bij, | - E) - Qx
Forlsksn-s-1, 5 := (vf‘ﬂ,--- ,v}‘,) where
£ te{l+1,1+2,- ,pP\{i1, iz, -++ , it}
vi={ o te{in, iz ik} , (134)
1 t =iy
— k k
and Q; := (Ws+l+1’ cee ,wn) where
. é’l(:{t) te{s+l+1,3+l+2y“'7n}\{j1’j21"'5jk}
wi=1¢ 0 te {rajas ek} : (135)
1 t=j
Forn-s-l+1<ks<n-s,5:= (v’l‘,~~~ ,vf‘) where
& te{1,2,---,I0{i i .
. tir s £ ’ n-s—1+1s tn-s-1+2» s k}
Ve = 0 t € {in-s-1+1> In-s-142> " * > lk-1} ’ (136)
1 t =iy
and Qy, := (w’{,- ’Ws—p+l) where
k . . .
r 'fl(kt) te{,2,-+,s=p+IN\Un-s-ts1sJn-s-tv2> " 5 Jx}
wt = 0 te {jn—s—l+1’jn—s—l+2: e ’jk—l} : (137)

1 t=jx

Let A™ be the image of CP™"P) under J. Then, { (A", J)™)}
O<l<n-s.

rey, is @ holomorphic atlas for R, (Uy),



DE GRUYTER Avanishing theorem for the canonical blow-ups of Grassmann manifolds = 435

B Restriction formulaswhenp =n-sors

B.1 Proof of Lemma 3.7.

Since D7, D3,-+, D} 4 - have empty intersection with D;, by Lemma 2.11 we can conclude the following

formulas for line bundles.

o = Rs.pn)” (O6(p,m(D) |- - Z (r+1-1)-D},

1r+2]

= (Rs,p,n)" (O6(p,m(1)) by = Z (r-i)-DJ-D7,
i=r+2-j (138)

B = (Rs.pn)” (06p,m(1) Ip; - Z (r-1-1)-D;]-2D7 -D7,

i=r+2-j
BY) = Rspn)” (O6(p.m) I = Dy = G=2)D4 = (G =3)DD, —+-- =D, (139)
BY, = Rspin)” (O6(p,mD) Ip: = G~ DD} =G ~2)DF, ~--- =D, (140)
B;] = (Rs,p,n)* (OG(p,n)(l)) |D}‘ _jD:]1 - (] - 1)D:]2 -ttt T ZD:}(j,l) - D:j ’ (141)
M = (Rs,p,n)” (96, (1) |D’ G+1)D7 -jD -+ - ZD:;- - D:](,~+1) , (142)
. ) ) ) (143)
B = D7 = (R.pn)” (Ogp,m(1)) Ip; =Dy = -ov = -2 .
Then (94) and (95) follow from (139), (140), (141), and (142) directly.
When 1 < j < r - 2, subtracting (142) from (141), we derive that
D +D +---+DY  +DJ+D7 =B -B]. (144)
Restricting (61) to D; and plugging in (144), we have that
r-1 ; j+1 r )
Ky, ,,Ip; (s -p + 1By + Z +ZD Ty Z D7+ > b}
m= i=j+2 i=r+2-j (145)
r
=(s-p+1)BJ + ZZB_’ +B_] B;+1 + Z D%+ Y D
i=j+2 i=r+2-j
Similarly, when j = r - 1 or r, we have that
D +D7 +---+D7,  +DJ+D7 =B, (146)
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where we make the convention that D~/ “(r+1) is trivial; hence,

-1 j+
_Ksrs,p,n|D; =(s-p+ 1)Bai+zrz: J Z o Zr: D 1 i Z D
m=1 i=1

i=j+2 i=r+2-j

(147)
=(s - p+1)B]+2ZB’+B] +ZD]+ Z D
i=j+2 i=r+2-j
Next we consider the restriction on D}-*. By Lemma 2.11 and the fact that D7, D3,--- , D, 4 have empty
intersection with D;-', we can conclude that
= (Rs,p, n) (OG(p n)(l) |D* Z(r‘*' 1-1)- DH >
i=1
= (148)
+1 = (Rs,p, n) (oG(p n)(l)) |D+ - Z(r ~i)- DH >
i=1
j+1
B’ 1 = = (Rs,p, n) (OG(p n)(l) |D+ - Z(] +2-1)- DH s (149)
i=1
= (Rs,p,n)" (O6p,m(1)) by = Z(l +1-1i)-D7, (150)
i=1
j-1
B, = Rspn) (O60.mD) o = > G- D7, (151)
i=1
} 2 . .
B, j=Rs,p, n)’ (O6,mD) by = Z(} 1-i)-D} —DJ:I(HZ_D , (152)
= (Rs,p,n)” (960,m(D) \D+ - Z (r-1- Dt{ .
(153)
i=r+2-j
. r-1
B:—] +] = (Rsp n) (OG(p n)(l) ‘D* - Z (T+ 1- l) Dﬂ
i=r+2-j
Then (98) and (99) follow from (149), (150), (151), (152), and (153).
When 1 <j < r - 1, subtracting (149) from (150), we derive that
D” + D+2 +eeet D”(] n* D” + D:’(Hl) = B:{}. - B:{l_].. (154)
Restricting (61) to D; and plugging in (154), we have that
. r-1 . i+1 . r . r .
Ky, ,.lp; =(s—p+ 1)- By +ZZB;{ +ZD:§ + Z D+ Z D7,
m=1 i=1 i=j+2 i=r+2-j (155)

r-1 r
=(s-p+1)-By+2> B +B - r1]+ZD+’+ > pi.
m=1

i=j+2 i=r+2-j
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When j = r, subtracting (149) from (150), we derive that

DI+ oD + D+ Dy - B - B
Restricting (61) to D; and plugging in (156), we have that
) r-1 j+1 r )
—K%Mb;=(s—p+1)-Bgf+zZ m+ > D] ZD” > b7,
m=1 i=1 i=j+2 i=r+2-j

r-1 r r
=(s-p+1)-BJ+2> Bl+BY-BJ+> DJ+ Y DY.
m=1

i=j+2 i=r+2-j

We complete the proof of Lemma 3.7. B

B.2 Proof of Lemma 3.8.

ince D, D3, -+ _; have empty intersection wi y Lemma 2.11 we can conclude tha
Since D7, D} ,Dyyjh ith D;, by L 211 lude that

By =D = Rspn)" (Ogp.0)(D)) Io; - Z (r+1-i)-D7,

i=r+2-j
. r-1
BY = Rs.pn)” (O(pmD) Ip; - > (r=-D7-D7,
i=r+2—j

By = (Rsp.)" (Og(p,m (D) s - Z(r— -)- D} -2D% - D7),

i=r+2-j
BY) = Rspn)” (O6(p.m) I = DYy = G=2)D4 = (G =3)DD —--- =D,
B7, = Rep)” (O(p,m(D) Ip; -G~ 1D = G-2D% —--- =D, ),
B7 = Rspn) (96p,m(D) Ip- =jD4 = G~ DD, ~--- = 2D, - D7,
1+1 = (Rs.p, n)’ (OG(p n)(l)) |D’ G+ 1)D:}1 _jD:]2 T ZD:;‘ - D:}(j+1) ’
B, = (Rsp.n)" (Og(p.m(D) Ip; = (r=1D7 == -7 .
B;’ = D:lr = (Rs,p’n)* (OG(p,n)(l)) |D]' - TD:]l — e — e — ZD:](r—l) .

Then (102) and (103) follow directly.
When 1 < j < r - 2, subtracting (162) from (161), we derive that

9 . p _BI_ g
D +D7, +.. +D](11)+D’+D’(]+1) B/ -B],.
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(156)

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)
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Restricting (61) to D; and plugging in (164), we have that

r-1 j+1
— = l -J
Kol <23 B+ S0+ 0]+ Y )

m=1 i=1 i=j+2 i=r+2-j
r-1

- B 4+ 1 -

=2) Ba+B-Bp+ Z D Z D
m=1 i=j+2 i=r+2-j

When j = r - 1 or r, we have that

DY D} +--+DJ DI +DT =B

G-1) G+1) T Provd
hence,

r-1 j+1

— "—] ]

Kol 23 B+ D 0 3 0

m=1 i=1 i=j+2 i=r+2-j
r-1

=2 S+ B/ +ZD"+ Z D
m=1 i=j+2 i=r+2-j

Next we consider the restriction on D;. By Lemma 2.11 and the fact that D7, D3, - -

intersection with D]T, we can conclude that

r-1
BY =D = (Rsp.n) (060,m(1)) Ip; = Z(T +1-1)- DH ,
i1
r-1

ﬂ = (Rs,p,n)” (960.mD) by = Z(T’ -i)- DH ;

i=1

j+1
Br 1-j (Rspn) (OG(pn)(l)) |D+—Z(j+2 l) D+1’

i=1

= (Rs,p, n) (OG(p n)(l) |D* Z(} +1-10)- D+1 >

i=1

j-1
B, = Rspn) (O60.mD) o = > G- DD,

i=1

j-2
r+2 -j - = (Rs.p, ") (OG(P ")(1) |D+ B Z(} 1-1)- Di)l - DJ—r](r+2—]') ’
i=1
, 1 = (Rsp n) (OG(p n)(l) Dy~ Z (r-i- D+] .

i=r+2-j
. . r_l .
BY = D7} = Rsp.n)” (Og(p,m(D) Ipy = > (r+1-1)-D7.
i=r+2-j

DE GRUYTER

(165)

(166)

(167)

, D7, ,_. have empty

r+1-j

(168)

(169)

(170)

@an)

(172)

(173)
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Then (106) and (107) follow from (169), (170), (171), (172), and (173).
When 1 <j < r - 2, subtracting (169) from (170), we derive that

+j +j + +j _ +} Hhti
D, +D+2+ +D+0 1)+D +D+(}+1) B Br—l—j'

Restricting (61) to D;-' and plugging in (174), we have that

hence,

r-1 j+1 r
- +j
Kl = Z AILXE >0 Y o,
i=j+2 i=r+2-j
r-1 r
- BY + B _BY +
=2 Bi+B - ,1}+ZD > b,
m=1 i=j+2 i=r+2-j
Whenj=r-1lorr,
4 4 pt + JeDi =B,
D;i+D5+---+D wGon T D+ D+0+1) BY;
r-1 j+1
Rt + +l
Kol 2B S0 0 3 0
i=j+2 i=r+2-j
r-1 r r
N BY 4B + +
=2> BJ+BY+> D+ > DY.
m=1 i=j+2 i=r+2-j

We complete the proof of Lemma 3.8. i

A vanishing theorem for the canonical blow-ups of Grassmann manifolds
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(174)

(175)

(176)
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