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1 Introduction
Let X be a complex projective manifold. A line bundle L over X is said to be strictly nef if

L · C > 0

for each irreducible curve C ⊂ X. This notion is also called "numerically positive" in literatures (e.g. [25]).
The Nakai-Moishezon-Kleiman criterion asserts that L is ample if and only if

Ldim Y · Y > 0

for every positive-dimensional irreducible subvariety Y in X. Hence, ample line bundles are strictly nef. In
1960s, Mumford constructed a number of strictly nef but non-ample line bundles over ruled surfaces (e.g.
[25]), and they are tautological line bundles of stable vector bundles of degree zero over smooth curves of
genus g ≥ 2. By using the terminology of Hartshorne ([24]), a vector bundle E → X is called strictly nef
(resp. ample) if its tautological line bundle OE(1) is strictly nef (resp. ample). One can see immediately that
the strictly nef vector bundles constructed byMumford are actuallyHermitian-�at. Therefore, some functorial
properties for ample bundles ([24]) are not valid for strictly nef bundles. In this note, we give a brief exposition
on the di�erences and similarities between strict nefness and ampleness, and survey some recent progress
on understanding the geometry of projective manifolds endowed with some strictly nef bundles.

Starting in the mid 1960’s, several mathematicians–notably Grauert, Gri�ths and Hartshorne ([21–24])–
undertook the task of generalizing to vector bundles the theory of positivity for line bundles. One of the goals
was to extend to the higher rank setting as many as possible of the beautiful cohomological and topological
properties enjoyed by ample divisors. In the past half-century, a number of fundamental results have been
established. For this rich topic, we refer to the books [31, 32] of Lazarsfeld and the references therein.
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1.A Abstract strictly nef vector bundles.

Let’s recall a criterion for strictly nef vector bundles (see [35, Proposition 2.1]) which is analogous to the
Barton-Kleiman criterion for nef vector bundles (e.g. [32, Proposition 6.1.18]). This criterion will be used fre-
quently in the sequel.

Proposition 1.1. Let E be a vector bundle over a projectivemanifold X. Then the following conditions are equiv-
alent.

(1) E is strictly nef.
(2) For any smooth projective curve C with a �nite morphism ν : C → X, and for any line bundle quotient

ν*(E)→ L, one has
deg L > 0.

Recall that for an ample line bundle L, one has the Kodaira vanishing theorem

H i(X, L*) = 0 for i < dim X.

For an ample vector bundle E with rank r ≥ 2, one can only deduce

H0(X, E*) = 0

and the higher cohomology groups H i(X, E*) (i ≥ 1) may not vanish. By using Proposition 1.1, we obtain a
similar vanishing theorem for strictly nef vector bundles.

Theorem 1.2. Let E be a strictly nef vector bundle over a projective manifold X. Then

H0(X, E*) = 0.

It is worth pointing out that for a strictly nef vector bundle E with rank r ≥ 2, the cohomology group
H0(X, SymkE*) may not vanish for k ≥ 2, which is signi�cantly di�erent from properties of ample vector
bundles. Indeed, strict nefness is not closed under tensor product, symmetric product or exterior product of
vector bundles. This will be discussed in Section 2.

It is well-known that vector bundles over P1 split into direct sums of line bundles. By using Proposition
1.1 again, one deduces that strictly nef vector bundles over P1 are ample. In [35, Theorem 3.1], the following
result is obtained.

Corollary 1.3. If E is a strictly nef vector bundle over an elliptic curve C, then E is ample.

As we mentioned before, over smooth curves of genus g ≥ 2, there are strictly nef vector bundles which are
Hermitian-�at. There also exist strictly nef but non-ample bundles on some rational surfaces ([13, 30]). It is
still a challenge to investigate strictly nef vector bundles over higher dimensional projective manifolds. We
propose the following conjecture, which is also the �rst step to understand such bundles.

Conjecture 1.4. Let E be a strictly nef vector bundle over a projective manifold X. If −KX is nef, then det E is
ample.

Although this conjecture is shown to be a consequence of the "generalized abundance conjecture" (e.g. [33,
34]), we still expect some other straightforward solutions. Indeed, we get a partial answer to it.

Theorem 1.5. Let E be a strictly nef vector bundle over a projective manifold X. If −KX is nef and big, then det E
is ample.

We refer to [6, 26] for more details on positivity of equivariant vector bundles.
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1.B The geometry of projective manifolds endow with strictly nef bundles.

Since the seminal works of Mori and Siu-Yau ([42], [49]) on characterizations of projective spaces, it be-
comes apparent that the positivity of the tangent bundle of a complex projective manifold carries important
geometric information. In the past decades, many remarkable generalizations have been established, as,
for instance, Mok’s uniformization theorem on compact Kähler manifolds with semipositive holomorphic
bisectional curvature ([41]) and fundamental works of Campana, Demailly, Peternell and Schneider ([7], [16],
[46]) on the structure of projective manifolds with nef tangent bundles. For this comprehensive topic, we
refer to [7, 10–12, 12, 16, 17, 35, 41, 42, 44, 46, 49, 57] and the references therein.

Aswepointedout before, strict nefness is anotionof positivityweaker thanampleness. Even though there
are signi�cant di�erences between them, we still expect that strict nefness and ampleness could play similar
roles inmany situations. The following result,which extendsMori’s Theorem, is obtained in [35, Theorem1.4].

Theorem 1.6. Let X be a projective manifold. If TX is strictly nef, then X is isomorphic to a projective space.

Therefore, TX is ample if and only if it is strictly nef. However, this is not valid for cotangent bundles. Indeed,
Shepherd-Barron proved in [48] that there exists a projective surface whose cotangent bundle is strictly nef
but not ample (see e.g. Example 4.2).

Let us consider manifolds with strictly nef canonical or anti-canonical bundles. Campana and Peternell
proposed in [7, Problem 11.4] the following conjecture, which is still a major problem along this line.

Conjecture 1.7. Let X be a projective manifold. If K−1
X is strictly nef, then X is Fano.

This conjecture has been veri�ed for projective manifolds of dimension 2 in [40] and dimension 3 in [47] (see
also [52] and the references therein). Recently, some progress has been achieved in [35, Theorem 1.2].

Theorem 1.8. If K−1
X is strictly nef, then X is rationally connected.

Indeed, we show in [39] that if (X, ∆) is a projective simple normal crossing pair and −(KX + ∆) is strictly nef,
then X is rationally connected.

The following dual version of Conjecture 1.7 is actually a consequence of the abundance conjecture.

Conjecture 1.9. If KX is strictly nef, then KX is ample.

As analogous to the Fujita conjecture, Serrano proposed in [47] the following conjecture, which is a general-
ization of Conjecture 1.7.

Conjecture 1.10. Let X be a projective manifold. If L is a strictly nef line bundle, then KX ⊗ L⊗m is ample for
m ≥ dim X + 2.

This conjecture has been solved for projective surfaces in [47]. For the progress on projective threefolds and
higher dimensional manifolds, we refer to [9, Theorem 0.4] and the references therein.

It is also known that the existence of "positive" subsheaves of the tangent bundle can also characterize
the ambient manifold. For instance, Andreatta and Wiśniewski established in [1, Theorem] that if the tan-
gent bundle TX of a projective manifold X contains a locally free ample subsheaf F, then X is isomorphic to a
projective space.WhenF is a line bundle, this result is proved byWahl in [54], and in [8], Campana and Peter-
nell established the cases rank(F) > dim X −2. It is also shown that the assumption on the local freeness can
be dropped ([2, 37]). On the other hand, according to Mumford’s construction (see Example 2.5), Andreatta-
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Wiśniewski’s result does not hold if the subsheaf F is assumed to be strictly nef. Indeed, we obtained in [38,
Theorem 1.3] the following result.

Theorem 1.11. Let X be a projectivemanifold. Assume that the tangent bundle TX contains a locally free strictly
nef subsheaf F of rank r. If X is not isomorphic to a projective space, then X admits a Pd-bundle structure
φ : X → T for some integer d ≥ r where T is a hyperbolic projective manifold of general type.

Recall that T is said to be hyperbolic if every holomorphic map from C to it is constant. We expect a stronger
geometric positivity on the cotangent bundle of the base T in Theorem 1.11. Moreover, we obtain in [38, The-
orem 1.4] a characterization of projective spaces.

Theorem 1.12. Let X be an n-dimensional complex projective manifold such that TX contains a locally free
strictly nef subsheaf F. If π1(X) is virtually solvable, then X is isomorphic to Pn, and F is isomorphic to either
TPn or OPn (1)⊕r.

There are many other characterizations of projective spaces for which we refer to [3, 4, 8, 18, 19, 27, 28, 36,
45, 51, 55] and the references therein.

Acknowledgements. The authors would like to thank the anonymous referee whose comments have signif-
icantly improved this paper.

2 Basic properties and examples
In this section, we investigate basic properties of strictly nef bundles and discuss some examples. As we

mentioned before, Mumford constructed a strictly nef vector bundle which is not ample (see [25, Chapter I,
Example 10.6]). We shall describe this example in details. Let E be a rank 2 vector bundle over a smooth curve
C of genus g ≥ 2, X = P(E) be the projectivized bundle and π : P(E) → C be the projection. Let OE(1) be the
tautological line bundle of P(E) and D be the corresponding divisor over X.

Lemma 2.1. [25, Chapter I, Proposition 10.2] For any m > 0, there is a one-to-one correspondence between

(1) e�ective curves Y in X, having no �bers as components, of degree m over C; and
(2) sub-line bundles L of SymmE.

Moreover, under this correspondence, one has

D · Y = m deg(E) − deg(L). (2.1)

For any e�ective curve Y in X, we denote by m(Y) the degree of Y over C. Then there is an exact sequence

0→ Pic(C) π*→ Pic(X) m→ Z→ 0.

It follows that thedivisors onX,modulonumerical equivalence, forma free abeliangroupof rank2, generated
by D and F where F is any �ber of P(E).

Lemma 2.2. [25, Chapter I, Theorem 10.5] Let C be a smooth curve of genus g ≥ 2.

(1) If E is a stable vector bundle, then every symmetric power SymkE is semi-stable.
(2) For any r > 0 and d ∈ Z, there exists a stable vector bundle with rank r and degree d such that all symmetric

powers SymkE are stable.
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Theorem 2.3. [25, Chapter I, Example 10.6] Let E be a rank 2 vector bundle over a smooth curve of genus g ≥ 2.
If deg(E) = 0 and all symmetric powers SymkE are stable, then E is a strictly nef vector bundle, i.e. OE(1) is a
strictly nef line bundle. Moreover E is not ample.

Proof. Let Y be an arbitrary irreducible curve on X. If Y is a �ber, then D · Y = 1. If Y is an irreducible curve
of degree m > 0 over C, then by Lemma 2.1, Y is corresponding to a sub-line bundle L of SymmE. Note that
since SymmE are stable and of degree zero for all m ≥ 1, we have

deg(L) <
deg

(
SymmE

)
rank

(
SymmE

) = 0.

Therefore, by formula (2.1)
D · Y = m deg(E) − deg(L) = − deg(L) > 0.

Hence, the line bundleOE(1) of the divisor D is strictly nef, i.e. E is a strictly nef vector bundle. Since deg(E) =
0, E cannot be ample.

Lemma 2.4. Let E be a vector bundle over a smooth curve C. If E is stable and deg(E) = 0, then E admits a
Hermitian-�at metric.

Proof. Since E is stable over C, there exists a Hermitian-Einsteinmetric h on E (e.g. [53]), i.e. g−1 ·Rαβ̄ = c ·hαβ̄
for someconstant cwhere g is a smoothmetric on C. Sincedeg(E) = 0,wededuce c = 0, i.e. (E, h) isHermitian-
�at.

We summarize Mumford’s example as following.

Example 2.5. Let C be a smooth curve of genus g ≥ 2. There exists a rank 2 vector bundle E → C satisfying
the following properties:

(1) deg(E) = 0;
(2) SymkE are stable for all k ≥ 1;
(3) E is strictly nef but not ample; E* is strictly nef but not ample;
(4) E admits a Hermitian-�at metric.
(5) Let X = P(E), π : X → C be the projection and OE(1) be the tautological line bundle. Then TX/C = K−1

X/C
∼=

OE(2)⊗ π* det E* is strictly nef.

Although the strict nefness is not closed under tensor products and wedge products, we still have the follow-
ing properties by using the Barton-Kleiman type criterion (Proposition 1.1).

Proposition 2.6. Let E and F be two vector bundles on a projective manifold X.

(1) E is a strictly nef vector bundle if and only if for every smooth curve C and for any non-constant morphism
f : C → X, f *E is strictly nef.

(2) If E is strictly nef, then any non-zero quotient bundle Q of E is strictly nef.
(3) E ⊕ F is strictly nef if and only if both E and F are strictly nef.
(4) If the symmetric power SymkE is strictly nef for some k ≥ 1, then E is strictly nef.
(5) Let f : Y → X be a �nite morphism such that Y is a smooth projective variety. If E is strictly nef, then so is

f *E.
(6) Let f : Y → X be a surjective morphism such that Y is a smooth projective variety. If f *E is strictly nef, then

E is strictly nef.

Example 2.7. Let E be the strictly nef vector bundle in Example 2.5.

(1) Λ2E = det E is numerically trivial and it is not strictly nef;
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(2) the tensor product E ⊗ E* is not strictly nef since H0(C, E ⊗ E*) ∼= C;
(3) E ⊕ E* is strictly nef, but Sym2(E ⊕ E*) is not strictly nef.

The following result is well-known and it will be used frequently in the sequel.

Lemma 2.8. If L is a strictly nef and semi-ample line bundle, then it is ample.

Proof. Since L is semi-ample, mL is globally generated for some large m. Let ϕm : X → Y be the morphism
de�ned by |mL|. Since L is strictly nef, it is easy to see that ϕm is �nite and so L is ample.

Corollary 2.9. Let L be a strictly nef line bundle. Then H0(X, L*) = 0. Moreover, for any coheret sheaf F, there
exists a postive integer m0 = m0(L,F) such that for m > m0

H0(X, (L*)⊗m ⊗ F) = 0. (2.2)

Proof. IfH0(X, L*) ≠ 0, then L* is e�ective. Since L is nef,wededuce that L is trivial and this is a contradiction.
Hence H0(X, L*) = 0 and L* is not pseudo-e�ective. By [56, Corollary 1.6], L is (dim X − 1)-ample, i.e. for any
coherent sheaf F′,

Hn(X, L⊗m ⊗ F′) = 0

for m ≥ m1(L,F′). By Serre duality, the vanishing (2.2) holds.

Recall that for an ample line bundle L, one has the Kodaira vanishing theorem. For an ample vector bundle
E, one can only deduce H0(X, E*) = 0 and the higher cohomology groups H i(X, E*) (i > 1) may not vanish.
For instance, when X = Pn with n > 2 and E = TPn, one has

H1(X, E*) ∼= H1,1(X,C) ∼= C ≠ 0.

For strictly nef vector bundles, we have a similar vanishing theorem.

Theorem 2.10. Let E be a strictly nef vector bundle over a projective manifold X. Then

H0(X, E*) = 0.

Proof. Suppose σ ∈ H0(X, E*) is a nonzero section. Then by [16, Proposition 1.16], σ does not vanish any-
where. This section gives a trivial subbundle of E* and so a trivial quotient bundle of the strictly nef vector
bundle E. This contradicts to Proposition 2.6 (2).

Note that the vanishing in (2.2) does not hold for higher rank vector bundles. Indeed, let E be the strictly nef
vector bundle in Example 2.5, X = P(E) and π : X → C be the projection. Let F = K⊗mC for some su�ciently
large m. Then

H0(C, SymkE* ⊗ F) ≠ 0

for all k > 0. Since SymkE* is a direct summand of (E*)⊗k1 for some large k1, we obtain the non-vanishing
H0(C, (E*)⊗k1 ⊗ F) ≠ 0 for strictly nef vector bundle E.

Remark 2.11. For a strictly nef vector bundle E with rank r > 2, in general, H0(X, SymkE*) = 0 dos not hold
for k > 2.

We give more examples of strictly nef vector bundle over higher dimensional projective manifolds (see [38,
Section 5] for details). A line bundle L over a projective variety X of dimension n is called k- strictly nef if

Ldim Y · Y > 0

for every irreducible subvariety Y in X with 0 < dim Y ≤ k. Hence, 1-strictly nef is exactly strictly nef, and an
n-strictly nef line bundle is ample.
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Theorem 2.12. [50, Lemma 3.2 and Theorem 6.1] Let C be a smooth curve of genus g > 2. Then for any r > 2,
there exists aHermitian �at vector bundle E of rank r such that the tautological line bundleOE(1) is (r−1)-strictly
nef. In particular, E is strictly nef.

Fix a smooth curve C of genus g > 2. Let r > 2 and E be a vector bundle of rank r as in Theorem 2.12.

Example 2.13. Let X = P(E). Then we have the following relative Euler exact sequence

0→ OX → p*E* ⊗ OE(1)→ TX/C → 0,

where p : X = P(E)→ C is the natural projection. It is shown in [38, Example 5.9] that p*E* ⊗OE(1) is strictly
nef.

Example 2.14. We consider the following extension of vector bundles

0→ Q → G → E* → 0,

where Q is a nef vector bundle of positive rank. Since E* is Hermitian �at, it is numerically �at. In particular,
E* is nef and so is G ([16, Proposition 1.15]). Let X = P(G) and p : X = P(G) → C be the natural projection.
Then we have the following relative Euler sequence

0→ OX → p*G* ⊗ OG(1)→ TX/C → 0.

Since E is a subbundle of G*, it follows that F := p*E ⊗ OG(1) is a subbundle of p*G* ⊗ OG(1). We proved
in [38, Example 5.10] that p*E ⊗ OG(1) is strictly nef and the restriction of F to �bers of p is isomorphic to
OPd (1)⊕r. In particular, F is not a subbundle of TX/C.

3 Strictly nef vector bundles
In this section, we consider strictly nef vector bundles over higher dimensional projective manifolds. As

pointed out in the previous sections, the properties of strictly nef vector bundles are closely related to the
geometry of ambient manifolds. When X is P1 or an elliptic curve, a strictly nef line bundle L over X is ample.
It is also known that every strictly nef line bundle over an abelian variety is ample ([47, Proposition 1.4]),
and Chaudhuri proved in [13] that every strictly nef homogeneous bundle on a complex �ag variety is am-
ple. The following conjecture is proposed for strictly nef vector bundles which is a consequence of Serrano’s
Conjecture 1.10.

Conjecture 3.1. Let E be a strictly nef vector bundle over a projective manifold X. If −KX is nef, then det E is
ample.

Proposition 3.2. Conjecture 1.10 implies Conjecture 3.1.

Proof. Suppose Conjecture 1.10 is valid. Let Y = P(E), L = OP(E)(1) and π : Y → X be the projection. For large
m, KY ⊗ L⊗m is ample. Since −KX is nef, KY/X ⊗ L⊗m is ample. We know det π*

(
KY/X ⊗

(
KY/X ⊗ L⊗m

))
is

ample and so is det E.

A special case of Conjecture 3.1 is established and we expect a direct proof of it by adapting similar ideas.

Theorem 3.3. Let E be a strictly nef vector bundle over a projective manifold X. If −KX is nef and big, then det E
is ample.

Proof. If E is a strictly nef line bundle, then E−KX is nef and big. By Kawamata-Reid-Shokurov base point free
theorem, E is semi-ample. Thanks to Lemma 2.8, E is ample. If E has rank r > 2, we consider the projective
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bundle Y = P(E). Let OE(1) be the tautological line bundle of the projection π : Y → X. By the projection
formula, we have

−KY = OE(r)⊗ π*(−KX)⊗ π*(det E*).

For any m > 0, the line bundle L = OE(m)⊗ π*(det E) is strictly nef. Since

L − KY = OE(m + r)⊗ π*(−KX),

we deduce L − KY is strictly nef. On the other hand, L − KY is big. Indeed, since both OE(1) and −KX are nef,
the top intersection number

(L − KY )n+r−1 = (OE(m + r)⊗ π*(−KX))n+r−1

≥
(
OE(m + r)

)r−1 ·
(
π*(−KX)

)n
> 0.

Therefore, by the base point free theorem again, L is semi-ample and so L is ample. By the positivity of direct
image sheaves ([43]), we deduce that π*(KY/X ⊗ L⊗k) is ample for k large enough. By using the projection
formula, one can see that the ample vector bundle π*(KY/X ⊗ L⊗k) is of the form Symk0E ⊗ (det E)⊗k1 where
k0 and k1 are some positive integers. In particular, det E is ample.

The following result is proved in [35, Section 3].

Proposition 3.4. Let E be a strictly nef vector bundle over a projective manifold X. If either of the following
holds

(1) the Kodaira dimension κ(X) satis�es 0 6 κ(X) < dim X,
(2) −KX is pseudo-e�ective,

then det E is not numerically trivial.

4 Geometry of projective manifolds with strictly nef bundles
In this section, we describe the geometry related to strictly nef and ample bundles. As analogous to clas-

sical results of Mori ([42]), Cho-Miyaoka-Shepherd-Barron ([14]) and Dedieu-Hoering ([15]), we obtained char-
acterizations of Pn and quadrics ([35, Theorem 1.3 and Theorem 1.5]).

Theorem 4.1. Let X be a projective manifold of dimension n.

(1) If TX is strictly nef, then X is isomorphic to a projective space.
(2) If n ≥ 3 and

∧2 TX is strictly nef, then X is isomorphic to Pn or a quadricQn.

Gachet studied in [20] the case when Λ3TX is strictly nef.

We have already established in general that the tangent bundle TX is strictly nef if and only if it is ample.
However, the same does not hold for cotangent bundles.

Example 4.2. Let X be a bidisk quotient, ∆ × ∆/Γ, with Γ an irreducible torsion-free cocompact lattice. Let
E = T*X and L be its tautological line bundle. It is proved in [48] that L is strictly nef and big, but it is not
semi-ample.

We propose the following problem which is analogous to the classical result of Kobayashi that projective
manifolds with ample cotangent bundle are hyperbolic.



156 | Jie Liu, Wenhao Ou, and Xiaokui Yang

Problem 4.3. Let X be a projective manifold. If T*X is strictly nef, is X hyperbolic?

Let us consider manifolds with strictly nef canonical or anti-canonical bundles by recalling the Conjecture
1.7 of Campana and Peternell.

Conjecture 4.4. Let X be a projective manifold. If K−1
X is strictly nef, then X is Fano.

Recently, some evidences are established in [35, Theorem 1.2].

Theorem 4.5. Let X be a projective manifold of dimension n and 1 ≤ r ≤ n. If ΛrTX is strictly nef, then X is
rationally connected. In particular, if K−1

X is strictly nef, then X is rationally connected.

Let f : X → Y be a smooth surjective morphism between two projective manifolds. It is well-known that
if K−1

X is ample, then so is K−1
Y ([29], see also [5] for semi-ampleness). It is natural to propose the following

conjecture.

Conjecture 4.6. Let f : X → Y be a smooth surjective morphism between two projective manifolds. If K−1
X is

strictly nef, then so is K−1
Y .

Indeed, this conjecture can be regarded as a consequence of Conjecture 4.4. Thanks to Theorem 4.5, one
obtains a partial answer to Conjecture 4.6.

Corollary 4.7. Let f : X → Y be a smooth surjective morphism between two projective manifolds. If K−1
X is

strictly nef, then Y is rationally connected.

Example 4.8. Let f : X → Y be a smooth surjective morphism between two projective manifolds. It is well-
known that K−1

X/Y cannot be ample ([29]). However, it can be strictly nef.

We also propose the following general conjecture concerning strictly nef bundles.

Conjecture 4.9. Let X be a projective manifold.

(1) If ΛrTX is strictly nef for some r > 0, then K−1
X is ample;

(2) If ΛrT*X is strictly nef for some r > 0, then KX is ample.

The case hen T*X is strictly nef is of particular interest and it is also related to the Kobayashi-Lang conjecture
on hyperbolicity.

Let us consider the geometry of projective manifolds whose tangent bundle contains a "positive" sub-
sheaf. Recall that, Andreatta and Wiśniewski obtained in [1, Theorem] the following characterization of pro-
jective spaces.

Theorem 4.10. Let X be an n-dimensional projective manifold. Assume that the tangent bundle TX contains a
locally free ample subsheaf F of rank r. Then X ∼= Pn and either F ∼= TPn or F ∼= OPn (1)⊕r.

According to Example 2.5, this does not hold if the subsheaf F is assumed to be strictly nef. Indeed, we ob-
tained in [38, Theorem 1.3] the following structure theorem for projective manifolds whose tangent bundle
contains a strictly nef subsheaf.

Theorem 4.11. Let X be a projectivemanifold. Assume that the tangent bundle TX contains a locally free strictly
nef subsheaf F of rank r. Then X admits a Pd-bundle structure φ : X → T for some d ≥ r. Moreover, if T is not a
single point, then T is a hyperbolic projective manifold of general type.



Strictly nef vector bundles and characterizations of Pn | 157

Actually, we obtained in [38, Theorem 8.1] a concrete description of the structure of the subsheaf F and it is
exactly one of the following:

(1) F ∼= TX/T and X is isomorphic to a �at projective bundle over T;
(2) F is a numerically projectively �at vector bundle and its restriction on every �ber of φ is isomorphic to

OPd (1)⊕r.

When dim T > 0, we established in [38, Corollary 1.5] the existence of non-zero symmetric di�erentials.

Corollary 4.12. Let X be a projective manifold whose tangent bundle contains a locally free strictly nef
subsheaf. If X is not isomorphic to a projective space, then X has a non-zero symmetric di�erential, i.e.
H0(X, Symi ΩX) ≠ 0 for some i > 0.
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