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Abstract:We give a self-contained survey of some approaches aimed at a global description of the geometry
underlying double �eld theory. After reviewing the geometry of Courant algebroids and their incarnations in
the AKSZ construction, we develop the theory of metric algebroids including their graded geometry. We use
metric algebroids to give a global description of doubled geometry, incorporating the section constraint, as
well as an AKSZ-type construction of topological doubled sigma-models. When these notions are combined
with ingredients of para-Hermitian geometry, we demonstrate how they reproduce kinematical features of
double �eld theory from a global perspective, including solutions of the section constraint for Riemannian
foliated doubled manifolds, as well as a natural notion of generalized T-duality for polarized doubled mani-
folds. We describe the L∞-algebras of symmetries of a doubled geometry, and brie�y discuss other proposals
for global doubled geometry in the literature.
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1 Introduction
This contribution is a relatively self-contained survey of some mathematical approaches to a rigorous global
formulation of the geometry underlying double �eld theory, that wewill colloquially call ‘doubled geometry’,
following standard terminology fromstring theory (moreprecisede�nitionswill be given inSection 5).Double
�eld theory is an extension of supergravity inwhich stringy T-duality becomes amanifest symmetry. Thebasic
example of a doubled geometry in this context comes from considering toroidal compacti�cations of string
theory, which we shall now brie�y review.

1.1 T-Duality and Doubled Geometry

Let V be a d-dimensional real vector space, and let Λ be a lattice of V. The symmetry group of string theory
with target space the d-dimensional a�ne torus Q = V/Λ is isomorphic to the integer split orthogonal group
O(d, d;Z); it preserves a �at split signature metric η induced by the canonical pairing between the lattice
Λ ⊂ V and its dual lattice Λ* ⊂ V*. This contains the geometric subgroup GL(d,Z) ⊂ O(d, d;Z) generated by
large di�eomorphisms of the torus Q, while the rest of the group is generated by T-dualities combined with
integer shifts of the Kalb-Ramond B-�eld which are not geometric symmetries of Q. However, T-duality does
act geometrically on the doubled torus M := (V ⊕ V*)/(Λ ⊕ Λ*) ' Q × Q̃, where Q̃ = V*/Λ* is the dual torus:
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O(d, d;Z) is a subgroup of the group of large di�eomorphisms GL(2d,Z) of M. In this sense string theory
“sees” a doubled geometry.

Let q : M → Q and q̃ : M → Q̃ be the canonical projections. The doubled torus M has a canonical
symplectic form ω when viewed as the dual torus bundle q : M → Q, and a pair of involutive Lagrangian
distributions L+ = Ker(dq̃) and L− = Ker(dq) (i.e. real polarizations of (M, ω)) such that TM ' L+ ⊕ L−.
As we will discuss in Section 4, this is a simple example of a ‘para-Kähler manifold’. Then there is a pair of
Lagrangian �brations

M

Q Q̃

q q̃ (1.1)

which yields a Lagrangian correspondence between the torus Q and its dual torus Q̃; this de�nes a T-duality
which swapsQwith Q̃. Clearly there are di�erent polarizations, corresponding to di�erent choices of splitting
V ⊕ V*, and in general factorized T-dualities swap only some of the �bre directions.

More generally, if π : Q → W is a principal torus bundle whose typical �ber is a d-dimensional torus,
endowed with a torus-equivariant gerbe with connection on Q of curvature H ∈ Ω3(Q) (which models the
NS–NS 3-form �ux in string theory), then the �brewise T-duality group acts geometrically on a doubled torus
bundle M → W with �bres of dimension 2d [1, 2]. If the T-dual is another principal torus bundle π̃ : Q̃→ W,
with an equivariant gerbe with connection on Q̃ of curvature H̃ ∈ Ω3(Q̃), then the correspondence space of
(1.1) is homeomorphic to the �bred product M ' Q ×W Q̃ with the principal doubled torus �bration π ◦ q =
π̃ ◦ q̃ : M → W. It has a �brewise non-degenerate 2-form ω ∈ Ω2(M) which is invariant under both torus
actions on Q and Q̃, and which obeys [3]

dω = q*H − q̃*H̃ .

This is an example of a ‘para-Hermitian �bration’ (see Section 4), and it de�nes a topological T-duality be-
tween the principal torus bundles π : Q → W and π̃ : Q̃ → W [4, 5]. These correspondence spaces were
extended to doubled twisted tori in [6], which further double the base W, giving examples of ‘almost para-
Hermitian manifolds’ (see Section 4), and provide a geometrization of the non-geometric T-duals that may
arise (such as the ‘T-folds’ of [1]); see [7] for an alternative viewpoint on these constructions in the language
of C*-algebra bundles and noncommutative correspondences.

1.2 Supergravity and Courant Algebroids

Supergravity is the low-energy approximation to string theory. It has long been appreciated that the ge-
ometry underlying type II supergravity is generalized geometry on Courant algebroids [8, 9]: the complete
bosonic �eld content (in the NS–NS sector) can be encoded in a generalized metric on an exact Courant alge-
broid [10, 11]. Exact Courant algebroids over a manifold Q have underlying vector bundle E ' TQ⊕ T*Q and
are classi�ed by the class of the 3-form H-�ux in H3(Q,R) [12, Letter 1] (see Sections 2 and 3). In this sense
generalized geometry “doubles” the tangent bundle TQ, which captures di�eomorphisms and B-�eld gauge
transformations as transition functions, and hence are manifest symmetries of supergravity.

However, factorized T-dualities relate supergravity in di�erent duality frames. This is re�ectedmathemat-
ically in the feature that topological T-duality between principal torus bundles can be implemented, using
the correspondence (1.1), as an isomorphism between exact Courant algebroids [5], but not generally as a
symmetry of a single exact Courant algebroid. Hence supergravity is not manifestly T-duality invariant.

1.3 Double Field Theory and Para-Hermitian Geometry

In double �eld theory, one instead “doubles” the underlying d-dimensional manifold Q to a manifold M of
dimension 2d, and considers geometry on the tangent bundle TM (see Section 6). What this doubling means
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exactly will be de�ned precisely in this paper, but the rough idea is as follows. Double �eld theory is a con-
strained theory, whose constraint follows from the level matching condition in string theory. At present this
constrained theory is not very well understood, but its reduction under a stronger constraint, called the ‘sec-
tion constraint’, has been extensively studied. Solving the section constraint amounts to selecting a ‘polar-
ization’ which reduces the geometry on TM to generalized geometry on an exact Courant algebroid. What
the doubled geometry of M accomplishes is that its group of (large) di�eomorphisms contains the T-duality
group in d-dimensions, and in this way T-duality becomes amanifest symmetry of the unconstrained double
�eld theory. In the example of the doubled tori or doubled torus bundles M → W from Section 1.1, double
�eld theory on M can be reduced in this way to string theory on a torus or a T-fold [1].

Such a duality covariantization of supergravity, with manifest O(d, d) symmetry, was suggested some
time ago by Siegel [13, 14]. A theory with manifest O(d, d;Z) symmetry was later shown to arise naturally as
a consequence of string �eld theory on a d-dimensional torus by Hull and Zwiebach [15]. One of the goals of
the programme that we outline in this contribution is to write double �eld theory on more general doubled
manifolds M, and to understand the meaning of the doubling for general string target spaces Q. This can be
achieved by using the symmetries and geometry of double �eld theory to de�ne a particular type of metric
algebroid [16], whichwe describe in Section 5 and call a ‘DFT algebroid’ following the terminology of [17], and
encoding the bosonic �elds in a generalized metric on a DFT algebroid and their dynamics by the vanishing
of a suitable Ricci tensor [18, 19].

In this contribution we aim to describe the geometric origin of the ingredients of double �eld theory and
its section constraint, aswell as its precise geometric relationwith generalized geometry, in the languageof al-
gebroids, which allows us to import techniques and ideas known from the more thoroughly studied Courant
algebroids. We will discuss other approaches to global double �eld theory, and compare them to our per-
spectives, at appropriate places throughout the paper, together with many more references to the pertinent
literature. We focus only on the kinematical aspects of the theory in the present paper.

As alluded to in Section 1.1, a prominent ingredient in our treatment of doubled geometry is the notion
of a para-Hermitian structure, which we discuss in Section 4, and in particular the formulation of double
�eld theory on almost para-Hermitian manifolds, which we discuss in Section 6. Para-Hermitian geometry
can be roughly thought of as a “real version” of complex Hermitian geometry. It has proven to be a suitable
framework for addressing global issues of doubled geometry, while providing a simple and elegant descrip-
tion of generalized �ux compacti�cations and non-geometric backgrounds in string theory. The relevance of
para-Hermitian structures in doubled geometry was originally noticed by Hull [1] (who called them ‘pseudo-
Hermitian structures’), and was later put forward in a rigorous framework by Vaisman [16]. Interest in the
formalism was rekindled by Freidel, Leigh and Svoboda [20] which led to some �urry of activity in the litera-
ture, see e.g. [21–24].

From this modern perspective, para-Hermitian geometry involves developing the interplay between the
well-studied geometry on exact Courant algebroids and the less understood geometry on the tangent bundle
of an almost para-Hermitian manifold, equipped with the structure of a DFT algebroid. The most prominent
examples of almost para-Hermitian manifolds in the literature are total spaces of �bre bundles, such as the
cotangent bundle T*Q and the tangent bundle TQ of amanifoldQ, groupmanifolds of doubled Lie groups and
Drinfel’d doubles, and the quotients of all these by discrete group actions, which includes the basic doubled
torus and doubled twisted torus examples discussed in Section 1.1.

We mention that para-Hermitian geometry also has a brief history of other applications to physics. Para-
Kähler structures appear in the special geometry ofN = 2 vector multiplets in Euclidean spacetimes [25, 26].
In [22] it was shown that para-Hermitian geometry o�ers an alternative geometrical formulation of both
Lagrangian and non-Lagrangian dynamical systems which is more natural than the commonly employed
Finsler geometry. Generalized para-Kähler structures and Born structures also appear respectively in target
space geometries for doubled sigma-models with N = (2, 2) twisted supersymmetry and N = (1, 1) super-
symmetry in [27–29].
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1.4 Graded Geometry and AKSZ Theory

In our development of geometry on certain classes of algebroids, we shall consider their incarnations in
graded geometry which leads to generalizations of the AKSZ construction of topological �eld theories. AKSZ
sigma-models capture the topological sectors of physical string theory sigma-models for target spaces with
background NS–NS �elds, such as the B-�eld or the H-�ux. They are based on the structure maps of alge-
broids and allow for a quantization of the underlying algebroid through the BV formalism; this is explained
in Section 2. They also allow for a better systematic description of the symmetries of algebroids, through their
reformulations in terms of dg-manifolds and L∞-algebras.

In Section 2 we discuss this in some detail for the case of Courant algebroids; in the case of exact Courant
algebroids, the corresponding AKSZ sigma-models describe the coupling of closed strings to (geometric and
non-geometric) tri-�uxes. In Section 5 we discuss an extension of the AKSZ theory that writes down a topo-
logical doubled sigma-model, which uni�es geometric and non-geometric �uxes with manifest T-duality in-
variance [17].

Along the way, we present a new version of the correspondence between metric algebroids and graded
geometry in Section 3 (see Theorem 3.53), which is entirely geometric and avoids any explicit coordinate de-
scription. It uses more recent developments on the geometrization of degree 2 manifolds based on double
vector bundles and VB-algebroids. This lends a more detailed understanding of the gauge symmetries un-
derlying metric algeboids, and their counterparts in double �eld theory, as well as a clearer connection with
other approaches to double �eld theory based on graded geometry [30, 31]. In particular, it provides a more
concise picture of the variousweakenings of the axioms of a Courant algebroid described in [17] and their role
in the geometry of double �eld theory.

1.5 Outline of the Paper

The organization of the remainder of this paper is as follows. In Section 2we introduce general notions of alge-
broids, culminating in Lie algebroids and Courant algebroids.We also develop their formulations as symplec-
tic Lie n-algebroids in graded geometry and the corresponding AKSZ sigma-models (for n = 0, 1, 2), together
with their gauge symmetries which can be formulated in terms of �at L∞-algebras. In Section 3 we discuss
the weakening of the notion of Courant algebroid to that of a metric algebroid, and give a new geometric for-
mulation of a metric algebroid as a symplectic 2-algebroid in graded geometry. In Section 4 we discuss basic
aspects of para-Hermitian geometry, and in particular we introduce the canonical metric algebroid which
plays a central role in the applications to double �eld theory. In Section 5 we give a rigorous account of dou-
bled geometry, introducing the notion of DFT algebroid. This has a broader notion of gauge symmetry that
can be formulated in terms of curved L∞-algebras, and we demonstrate how the AKSZ construction can be
extended to de�ne a topological sigma-model for a doubled geometry. Finally, in Section 6 we describe how
everything �ts together to give a rigorous formulation of some of the main ideas of double �eld theory, and in
particular how to solve the section constraint in a completely geometric and coordinate-independentmanner.
We give a detailed account of how DFT algebroids reduce to Courant algebroids in di�erent polarizations of a
foliated doubled manifold, how a conventional string background, including the NS–NS �elds, is recovered
in the language of Riemannian foliations, and how T-duality is manifested in this framework.

1.6 Glossary of Notation and Conventions

Q : manifold — all manifolds are smooth second countable para-compact Hausdor� manifolds of �nite and
non-zero dimension;
M : even-dimensional manifold;
M = (Q,A) : graded manifoldM with body Q and sheaf of functionsA ;
| · | : degree of a homogeneous element;
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Ak : sheaf of homogeneous functions of degree k ;
C∞( · ) : space of smooth functions on a (graded) manifold;
Ω•( · ) : space of di�erential forms on a (graded) manifold;
X( · ) : sheaf of vector �elds;
Xk( · ) : sheaf of homogeneous vector �elds of degree k;
E → Q : vector bundle E over Q — all vector spaces and vector bundles are considered over the ground �eld
R ;
Γ(E) : C∞(Q)-module of sections of E → Q ;
Aut(E) : group of automorphisms of a vector bundle E → Q which cover the identity map 1Q : Q→ Q ;
( · )t : transpose of a vector bundle morphism;
( · )] : vector bundle morphism E* → E induced by a (2, 0)-tensor in Γ(E ⊗ E) ;
( · )[ : vector bundle morphism E → E* induced by a (0, 2)-tensor in Γ(E* ⊗ E*) ;
Im( · ) : range of a vector bundle morphism;
Ker( · ) : kernel of a vector bundle morphism;
〈 · , · 〉 : duality pairing for a vector bundle and its dual;
E[k] : vector bundle E whose �bres are shifted in degree by k ∈ Z ;
SpanR( · ) : R-linear span of a set of vectors;
� : symmetric tensor product;
∧ : skew-symmetric tensor product;
[ · , · ]◦ : commutator bracket with respect to the composition ◦ ;
ι : interior multiplication;
L : Lie derivative;
Der(A) : A-module of derivations of a commutative algebra A ;
X · f : action of a vector �eld X ∈ Γ(TQ) as a derivation on a function f ∈ C∞(Q) .

2 Leibniz-Loday Algebroids and AKSZ Sigma-Models
In this section we will review some well-known material concerning algebroids, graded geometry and the
AKSZ construction. The main intent is to develop a fairly self-contained bottoms-up approach to the notion
of a Courant algebroid aswell as its features and applications in some detail, because later onwewill be inter-
ested in suitable weakenings of this notion, and we will attempt analogous constructions in those instances.
We omit several noteworthy properties and examples of Courant algebroids in this section for brevity, as they
will follow as special cases of our more general considerations in Sections 3 and 4.

2.1 Algebroids and Leibniz-Loday Algebroids

In this paper we use a very broad notion of an ‘algebroid’ which is adapted to all applications that we shall
consider.

De�nition 2.1. An algebroid over amanifoldQ is a vector bundle E → Q equippedwith anR-bilinear bracket
[ · , · ]E : Γ(E) × Γ(E) → Γ(E) on its sections, and a bundle morphism ρ : E → TQ covering the identity such
that the anchored derivation property

[e, f e′]E = f [e, e′]E +
(
ρ(e) · f

)
e′ (2.2)

holds for all e, e′ ∈ Γ(E) and f ∈ C∞(Q). The map ρ to the tangent bundle of Q is called the anchor map.
An algebroid morphism from an algebroid (E, [ · , · ]E , ρ) to an algebroid (E′, [ · , · ]E′ , ρ′) over the same

manifold is a bundle morphism ψ : E → E′ covering the identity such that ρ′ ◦ ψ = ρ and ψ ◦ [ · , · ]E =
[ · , · ]E′ ◦ (ψ × ψ).
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Note that here the bracket [ · , · ]E need not be skew-symmetric and it need not obey the Jacobi identity. More-
over, at this primitive level the only role of the anchormap ρ is to implement the anchored derivation property
(2.2) whose meaning is that, for each section e of E, [e, · ]E is a �rst-order di�erential operator on Γ(E) whose
symbol is the vector �eld ρ(e) onQ. Indeed, whenQ is a point, then an algebroid is simply a vector space with
a binary operation.

This level of generality is needed for our considerations of doubled geometry later on. Aswe shall discuss
throughout this paper, they have natural descriptions via the language of graded geometry in terms of vector
�elds and local coordinates. For the di�erent �avours of AKSZ constructions as we use them in this paper, we
will need a further algebraic condition on the bracket operation in De�nition 2.1.

De�nition 2.3. A Leibniz-Loday algebroid over a manifold Q is an algebroid (E, [ · , · ]E , ρ) whose bracket
satis�es the Leibniz identity

[e, [e1, e2]E]E = [[e, e1]E , e2]E + [e1, [e, e2]E]E , (2.4)

for all e, e1, e2 ∈ Γ(E).

When Q is a point, then a Leibniz-Loday algebroid is a vector space endowed with the structure of a Leibniz-
Loday algebra [32]. Generally, the anchored derivation property (2.2) and the Leibniz identity (2.4) together
imply that the anchor map ρ : E → TQ of a Leibniz-Loday algebroid becomes a homomorphism of Leibniz-
Loday algebras:

ρ([e1, e2]E) = [ρ(e1), ρ(e2)]TQ , (2.5)

where [ · , · ]TQ is the usual Lie bracket of vector �elds on TQ.

2.2 AKSZ Constructions

Fix an integer n ≥ 0. We use a somewhat simpli�ed form of the AKSZ construction [33] as a geometric tool
for building BV action functionals [34] for topological sigma-models of maps from an oriented compact n+1-
dimensional manifold Σn+1 (the ‘source’) to a symplectic Lie n-algebroid E over a manifold Q (the ‘target’).
The AKSZ sigma-models that arise in this way are Chern-Simons theories. In this sense they uniquely encode
(up to isomorphism) the algebroid E and provide a means for quantization of E. A review is found in [35].

We recall some de�nitions. A symplectic Lie n-algebroid is most concisely and naturally described in the
language of graded geometry as a di�erential graded symplectic manifold [36]. Recall that a graded manifold
M = (Q,A) is a ringed space together with the structure sheaf A of a graded commutative algebra over an
ordinary manifold Q. It can be modelled locally using even and odd coordinates in �xed degrees, and treated
concretely in the language of formal di�erential geometry by identifying smooth functions onMwith formal
power series in globally de�ned coordinates wα. We writeAk for the subsheaf ofA consisting of functions of
degree k.

De�nition 2.6. A di�erential graded manifold (dg-manifold for short) is a Z-graded manifold M = (Q,A)
equipped with a degree 1 vector �eld Q which is integrable, that is, [Q, Q] = 2Q2 = 0. The vector �eld Q is a
homological vector �eld.

When M is N-graded, so that A0 = C∞(Q), the N-grading can be conveniently described by means of the
Euler vector �eld ε: in coordinates wα with degrees |wα| ≥ 0, ε = ∑α |w

α|wα ∂
∂wα . A tensor �eld T on M is

said to be homogeneous of degree n ifLεT = n T, whereLε denotes the Lie derivative along ε. The following
construction, due to Roytenberg [37], will be used extensively in this section, as well as in Section 3.

Theorem 2.7. Let M = (Q,A) be an N-graded manifold equipped with a symplectic structure ω of degree
|ω| = n > 0, and associated graded Poisson bracket { · , · } of degree −n. Then there is a one-to-one corre-
spondence between integrable functions onM of degree n + 1 and homological symplectic vector �elds.
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Proof. Since
Lεω = n ω ,

the Cartan homotopy formula Lε = ιε ◦ d + d ◦ ιε implies

ω = 1
n dιεω ,

where ιε denotes contraction with the Euler vector �eld ε.
Let Q ∈ X1(M) be a symplectic vector �eld of degree 1. Then [ε, Q] = Q and LQω = dιQω = 0, which

gives
ιQω = ι[ε,Q]ω = [Lε , ιQ]◦(ω) = Lε ιQω − ιQ(n ω) ,

where we used the Cartan structure equations in the second equality. This yields

ιQω = 1
n+1 dιε ιQω .

Hence Q is a Hamiltonian vector �eld with Hamiltonian γ = 1
n+1 ιε ιQω ∈ An+1. The graded Jacobi identity for

the Poisson bracket implies
{γ, {γ, f}} = {{γ, γ}, f} − {γ, {γ, f}}

for all f ∈ C∞(Q). Thus
Q2 = X 1

2 {γ,γ}
,

where X 1
2 {γ,γ}

is the Hamiltonian vector �eld corresponding to 1
2 {γ, γ} ∈ An+2. Hence Q2 = 0 if and only if

{γ, γ} = 0 because { · , · } is non-degenerate.
Conversely, given any integrable function γ ∈ An+1, we use a derived bracket to set Q := {γ, · }. These

two constructions are inverse to each other.

Remark 2.8. The proof of Theorem 2.7 shows that every symplectic vector �eld of degree 1 on an N-graded
symplectic manifold (M, ω) with |ω| = n > 0 is given by a Hamiltonian of degree n + 1.

For our AKSZ constructionswe assume thatM is n-graded, that is, its coordinates are concentrated in degrees
0, 1, . . . , n. In this case we also callM a degree n manifold.

De�nition 2.9. A symplectic Lie n-algebroid is a degree n dg-manifold (M, Q) with a symplectic structure ω
of degree n for which Q is a symplectic vector �eld.

Remark 2.10. Generally, dg-manifolds are sometimes also refered to as ‘Q-manifolds’. Other terminology for
symplectic Lie n-algebroids appearing in the literature are ‘symplectic NQ-manifolds of degree n’ or ‘QPn-
manifolds’.

Symplectic Lie n-algebroids (M, Q, ω) arise from n-graded vector bundles over the degree 0 bodyQ ofM, and
are generally characterized by the following result, due to Kotov and Strobl [38].

Theorem 2.11. Let (M, Q, ω) be a symplectic Lie n-algebroid of degree n > 1. Then functions of degree n − 1
on M = (Q,A) can be identi�ed with sections of a vector bundle E → Q equipped with the structure of a
Leibniz-Loday algebroid.

Proof. Let f ∈ A0 be a function of degree 0 on Q, and let e, e′ ∈ An−1 be functions of degree n − 1 on M,
identi�ed as functions on E[n − 1] for a vector bundle E → Q. De�ne a bracket and anchor map on sections
Γ(E) by the derived brackets

[e, e′]E := −{{e, γ}, e′} and ρ(e) · f := (−1)n {{e, γ}, f} .

Then the anchored derivation property (2.2) follows from the derivation rule for the Poisson bracket { · , · }
induced by the symplectic structure ω, while the Maurer-Cartan equation {γ, γ} = 0 implies the Leibniz
identity (2.4) for the bracket [ · , · ]E, and hence that the anchor ρ is a bracket homomorphism.
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With this data, the AKSZ construction proceeds as follows. Let T[1]Σn+1 be the tangent bundle of the source
manifold Σn+1 with degree of its �bres shifted by 1, which is isomorphic to the exterior algebra of di�erential
forms on Σn+1; under this identi�cation it has a canonical homological vector �eld induced by the de Rham
di�erential d. LetM = Map(T[1]Σn+1,M) be the mapping space of degree 0 smooth maps X̂ : T[1]Σn+1 →M

which intertwine the homological vector �elds, that is, X̂*(d) = Q. Given an n-form α ∈ Ωn(M), we can lift it
to an n-form α ∈ Ωn(M) by trangression to the mapping space as

α =
∫

T[1]Σn+1

µ ev*(α) ,

where µ is the natural volumemeasure on T[1]Σn+1 and ev : T[1]Σn+1×M→M is the evaluationmap. Choose
a local 1-form ϑ onM such that ω = dϑ. In this paper we will only explicitly write the ‘classical’ or ‘bosonic’
part of the action functional underlying the AKSZ sigma-model. It is constructed by: (i) transgressing the form
−ιdϑ + γ to the mapping spaceM; (ii) integrating over the odd coordinates of T[1]Σn+1; and (iii) restricting to
degree 0 �elds. The 1-form ϑ de�nes the ‘kinetic term’ and the Hamiltonian γ de�nes the ‘interaction term’
of the AKSZ �eld theory.

Remark 2.12. The AKSZ construction is a geometric realization of the BV formalism [34] for topological �eld
theories with generalized gauge symmetries. The full BV master action functional is obtained by allowing
the �elds X̂ : T[1]Σn+1 → M to be maps of arbitrary Z-degree, which yields all auxiliary �elds and anti-
�elds of the BV formalism. Then the graded Poisson bracket { · , · } associated to the symplectic structure
ω implements the BV antibracket, while the Maurer-Cartan equation {γ, γ} = 0 implements the classical
master equation which guarantees gauge invariance of the BV action functional, as well as closure of the
gauge algebra.

Remark 2.13. Beyond Theorem 2.11, the further algebraic conditions and structures on symplectic Lie n-
algebroids, as classical geometric objects, are not known generally and must be unravelled on a case by case
basis. We consider below the �rst three degrees n = 0, 1, 2 in some detail. For n = 3 the algebroids were
characterized in [39, 40] and their AKSZ sigma-models applied to SL(5,R) exceptional �eld theory in [41, 42].
AKSZ constructions for higher-dimensional exceptional �eld theory are considered in [43].

2.3 Topological Quantum Mechanics

The simplest instance of the AKSZ construction is when the target is a symplectic dg-manifold of degree 0. In
this caseQ = 0, and thus a symplectic Lie 0-algebroid is just a symplecticmanifold (Q, ω) [36, 37]; the degree 1
Hamiltonian γ is then locally constant on Q. The corresponding AKSZ sigma-model is the one-dimensional
Chern-Simons theory whose Chern-Simons form is a local symplectic potential ϑ for the symplectic structure:
ω = dϑ. In local Darboux coordinates, where ω = dpi ∧ dqi, we take ϑ = pi dqi; here and in the following we
use the Einstein summation convention over repeated upper and lower indices.

For a cotangent bundle Q = T*W, with ω the canonical symplectic structure and ϑ the Liouville 1-form,
if Σ1 is an oriented compact 1-manifold, then the AKSZ construction produces a one-dimensional topological
sigma-model of smooth maps X : Σ1 → Q with action functional

S(X) =
∫
Σ1

X*ϑ .

BV quantization of this action functional de�nes a topological quantum mechanics, which quantizes the
symplectic manifold (Q, ω). When Σ1 is an interval this computes the Â-genus ofW [44, 45].
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2.4 Lie Algebroids and Poisson Sigma-Models

Let us turn to the lowest non-trivial rung n = 1 on the AKSZ ladder, �rstly by adding a further algebraic
condition on the bracket operation in De�nition 2.3 [46].

De�nition 2.14. A Lie algebroid (E, [ · , · ]E , ρ) over a manifold Q is a Leibniz-Loday algebroid whose bracket
is skew-symmetric:

[e1, e2]E = −[e2, e1]E ,

for all e1, e2 ∈ Γ(E).

It follows that the bracket operation of a Lie algebroid de�nes a Lie bracket on the sections of the vector
bundle E → Q. WhenQ is a point, a Lie algebroid is simply a Lie algebra. At the opposite extreme, the tangent
bundle TQ of any manifold Q is always a Lie algebroid with the Lie bracket of vector �elds [ · , · ]TQ and the
identity anchor map 1TQ.

Lie algebroids are canonically associated to dg-manifolds of degree 1, by the following construction due
originally to Vaintrob [47].

Proposition 2.15. There is a one-to-one correspondence between Lie algebroids and dg-manifolds of de-
gree 1.

Proof. Given a Lie algebroid (E, [ · , · ]E , ρ) over amanifoldQ, its corresponding degree 1manifold isM = E[1].
Since C∞(E[1]) = Γ(∧•E*), the homological vector �eld Q = dE of degree 1 is the Lie algebroid di�erential
de�ned by

dE ε(e1, . . . , ek+1) :=
k+1∑
i=1

ρ(ei) · ε(e1, . . . , êi , . . . , ek+1)

+
∑
i<j

(−1)i+j ε([ei , ej]E , e1, . . . , êi , . . . , êj , . . . , ek+1) ,

for all ε ∈ Γ(∧kE*) and e1, . . . , ek+1 ∈ Γ(E), where the hat denotes omission of the corresponding entry. This
is a derivation of degree 1 that squares to zero.

Conversely, given a degree 1 manifold M = (Q,A) endowed with a homological vector �eld Q, its corre-
sponding Lie algebroid is constructed as follows. Since the categories of vector bundles and degree 1 mani-
folds are equivalent,M ' E[1] for some vector bundle E → Q. Then the Lie algebroid structure on E is given
by the C∞(Q)-linear anchor map

ρ(e) · f := 〈Q · f , e〉 ,

for all f ∈ C∞(Q) and e ∈ Γ(E), where 〈 · , · 〉 is the canonical dual pairing betweenA1 ' Γ(E*) and Γ(E). The
Lie bracket is given by

〈[e1, e2]E , ε〉 := ρ(e1) · 〈e2, ε〉 − ρ(e2) · 〈e1, ε〉 − 〈Q · ε, e1 ∧ e2〉 ,

for all e1, e2 ∈ Γ(E) and ε ∈ Γ(E*). This bracket is skew-symmetric and satis�es the anchored derivation
property (2.2). The Leibniz identity is equivalent to the condition that Q is homological: Q2 = 0.

Remark 2.16. When endowed with the action of the homological vector �eld Q, the space of smooth
functions C∞(E[1]) becomes a cochain complex which computes the cohomology of the Lie algebroid
(E, [ · , · ]E , ρ), that is, its Chevalley-Eilenberg algebra

(
Γ(∧•E*), dE

)
.

We can now extend Proposition 2.15 to the case of symplectic dg-manifolds of degree 1 to infer that a sym-
plectic Lie algebroid is the same thing as a Poisson manifold [37].
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Theorem 2.17. There is a one-to-one correspondence between symplectic Lie algebroids and Poisson mani-
folds.

Proof. Any symplectic 1-graded manifold (M, ω) is canonically isomorphic to the shifted cotangent bundle
M = T*[1]Q over some manifold Q, with the canonical symplectic 2-form ω = dξi ∧ dxi, where xi are local
coordinates on Q and ξi are odd coordinates on T*[1]Q corresponding to the holonomic vector �elds ∂

∂xi on
Q. The corresponding graded Poisson bracket { · , · } can be identi�ed with the Schouten-Nijenhuis bracket
[ · , · ]S of multivector �elds on Q. The most general degree 2 function γ on T*[1]Q is of the form

γ = 1
2 π

ij(x) ξi ξj , (2.18)

where π = πij ∂
∂xi ⊗

∂
∂xj is any (0, 2)-tensor on Q. Then invariance of ω under the associated vector �eld

Q = {γ, · } on T*[1]Q implies π ∈ Γ(∧2TQ), and the Maurer-Cartan equation {γ, γ} = 0 implies that π is a
Poisson bivector on Q, that is, [π, π]S = 0.

Conversely, if (Q, π) is a Poisson manifold, then the Poisson bracket {f , g}π = π(df , dg) de�nes a Lie
algebra structure on the space of smooth functions C∞(Q) and is reproduced as a derived bracket with the
Hamiltonian (2.18) through

{f , g}π = −{{f , γ}, g} .

The homological vector �eld Q is the dg-structure of Proposition 2.15 corresponding to the cotangent Lie al-
gebroid (T*Q, [ · , · ]T*Q, π]): its anchor map is the natural bundle morphism π] : T*Q → TQ induced by the
bivector π, π]α := ιαπ, and the Lie bracket is the Koszul bracket on 1-forms which is de�ned by

[α, β]T*Q = Lπ]αβ − Lπ]βα − dια ιβπ

for α, β ∈ Ω1(Q). The di�erential Q = {γ, · } sends a function f ∈ C∞(Q) to π]df .

We now choose the Liouville 1-form ϑ = ξi dxi on T*[1]Q and apply the AKSZ construction with the Hamilto-
nian (2.18). The AKSZ action functional is de�ned on the space of vector bundle morphisms X̂ : TΣ2 → T*Q
from the tangent bundle of an oriented compact 2-manifold Σ2; such amap is given by its base map X : Σ2 →
Q and a section A ∈ Γ(T*Σ2 ⊗ X*T*Q). Then the action functional reads

S(X, A) =
∫
Σ2

〈A, dX〉 + 1
2 〈A, (π] ◦ X)A〉 ,

where we view the �elds as 1-forms A ∈ Ω1(Σ2, X*T*Q) and dX ∈ Ω1(Σ2, X*TQ), and 〈 · , · 〉 denotes the
natural pairing de�ned by pairing the dual values in the pullback bundles X*T*Q and X*TQ together with
the exterior product of di�erential forms. This is the action functional of the Poisson sigma-model [48, 49],
which is the most general two-dimensional topological �eld theory that can be obtained through the AKSZ
construction [50]. When Σ2 is a disk, the BV quantization of this sigma-model gives a string theory derivation
of Kontesevich’s deformation quantization of the Poisson manifold (Q, π) [51, 52].

2.5 Courant Algebroids and Courant Sigma-Models

We move to the next rung at n = 2. This time, instead of further constraining the bracket operation in De�-
nition 2.3, we complement it with further algebraic structure generalizing the notion of a quadratic Lie aleg-
bra [53–55].

De�nition 2.19. A Courant algebroid on a manifold Q is a Leibniz-Loday algebroid (E, [ · , · ]D, ρ) with a sym-
metric non-degenerate bilinear form 〈 · , · 〉E on the �bres of E which is preserved by the bracket operation:

ρ(e) · 〈e1, e2〉E = 〈[e, e1]D, e2〉E + 〈e1, [e, e2]D〉E , (2.20)

〈[e, e]D, e1〉E = 1
2 ρ(e1) · 〈e, e〉E , (2.21)

for all e, e1, e2 ∈ Γ(E). The bracket of sections [ · , · ]D is called a Dorfman bracket.
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Remark 2.22. The anchor map ρ and the pairing 〈 · , · 〉E from De�nition 2.19 induce a map ρ* : T*Q → E
given by

〈ρ*(α), e〉E = 〈ρt(α), e〉 ,

for all α ∈ Ω1(Q) and for all e ∈ Γ(E), where ρt : T*Q → E* is the transpose of ρ; as before, the bilinear
form 〈 · , · 〉 (without subscript) is the canonical dual pairing between the bundle E and its dual E*. The map
ρ* induces a map D : C∞(Q) → Γ(E) de�ned by Df = ρ*df , for all f ∈ C∞(Q), which obeys a derivation-like
rule and is the natural generalization of the exterior derivative in the algebroid E. This allows us to recast the
condition (2.21) as

[e, e]D = 1
2 D〈e, e〉E , (2.23)

for all e ∈ Γ(E). In particular, the symmetric part of the Dorfman bracket [ · , · ]D is given by

[e1, e2]D + [e2, e1]D = D〈e1, e2〉E , (2.24)

for all e1, e2 ∈ Γ(E).

Remark 2.25. The anchored derivation property (2.2) can be removed from the list of de�ning properties of
a Courant algebroid, as it now follows from the condition (2.20). Then the Leibniz identity (2.4) together with
(2.20) and (2.21) (or (2.23)) are a minimal set of three axioms needed to specify a Courant algebroid [55]. For
later reference, we also note that (2.23) together with the bracket homomorphism property (2.5) imply

〈Df ,Dg〉E = 0 (2.26)

for all functions f , g ∈ C∞(Q), or equivalently that the anchor map ρ vanishes identically on the image of the
generalized exterior derivativeD.

Example 2.27. Themost common example is the standard Courant algebroid, which features prominently in
generalized geometry. It is an extension of the tangent Lie algebroid (TQ, [ · , · ]TQ, 1TQ) by cotangent vectors
and is based on the generalized tangent bundle

E = TQ = TQ⊕ T*Q

over a manifold Q, with the three natural operations

〈X + α, Y + β〉TQ = ιXβ + ιYα ,

ρ(X + α) = X ,

[X + α, Y + β]D = [X, Y]TQ + LXβ − ιY dα ,

where the sections of E = TQ are comprised of vector �elds X, Y ∈ Γ(TQ) and 1-forms α, β ∈ Γ(T*Q). In this
example,D = d.

It is a celebrated result, due to Roytenberg [37, 56], and independently Ševera [12], that a symplectic Lie 2-
algebroid is the same thing as a Courant algebroid.

Theorem 2.28. There is a one-to-one correspondence between symplectic Lie 2-algebroids and Courant al-
gebroids.

Proof. Let (M, Q, ω) be a symplectic dg-manifold of degree 2. Choose local Darboux coordinates (xi , ζ a , ξi)
with degrees (0, 1, 2) in which the graded symplectic structure is given by

ω = dξi ∧ dxi + 1
2 ηab dζ a ∧ dζ b , (2.29)
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where ηab is a constant metric on the degree 1 subspace of M. The most general degree 3 function γ on M

has the form

γ = ρia(x) ξi ζ a − 1
3! Tabc(x) ζ a ζ b ζ c , (2.30)

where ρia and Tabc are degree 0 functions on the body Q of M. We use Theorem 2.11 to construct a Leibniz-
Loday algebroid (E, [ · , · ]D, ρ), with operations de�ned on degree 1 functions e which are identi�ed as local
sections of a vector bundle E over Q. Then the Poisson bracket

〈e1, e2〉E = {e1, e2}

de�nes a �brewise symmetric pairing 〈 · , · 〉E on E with local coordinate expression ηab. It satis�es the
Courant algebroid axioms (2.20) and (2.21) as a consequence of the derivation rule and the Jacobi identity
for the Poisson bracket { · , · } induced by the symplectic structure ω.

Conversely, given a Courant algebroid (E, [ · , · ]D, 〈 · , · 〉E , ρ) on Q, we de�ne a symplectic dg-manifold
(M, Q, ω) of degree 2 by the symplectic submanifold of T*[2]E[1] corresponding to the isometric embedding
E ↪→ E ⊕ E* with respect to the Courant algebroid pairing and the canonical dual pairing. Then xi are local
coordinates on Q, ξi are local �bre coordinates of the shifted cotangent bundle T*[2]Q corresponding to the
holonomic vector �elds ∂

∂xi , and ζ
a are local �bre coordinates of the shifted vector bundle E[1] corresponding

to a choice of basis ea of sections of the dual bundle E*. With ea the basis of sections of E dual to ea, the
structure functions in (2.29) and (2.30) are given by

〈ea , eb〉E = ηab , ρ(ea) = ρia
∂
∂xi

and 〈[ea , eb]D, ec〉E = Tabc ,

and the Courant algebroid axioms imply the Maurer-Cartan equation {γ, γ} = 0. The di�erential Q = {γ, · }
sends a function f ∈ C∞(Q) to ρtdf .

We now choose the Liouville 1-form

ϑ = ξi dxi + 1
2 ζ

a ηab dζ b (2.31)

on M and apply the AKSZ construction with the Hamiltonian (2.30). Let Σ3 be an oriented compact 3-
manifold, and choose a grading-preserving connection to �x an isomorphismM ' E[1]⊕ T*[2]Q. The AKSZ
action functional is de�ned on the space of degree 0 maps X̂ : T[1]Σ3 → M, which are given by a smooth
map X : Σ3 → Q, a section A ∈ Γ(T*Σ3 ⊗ X*E), and a section F ∈ Γ(∧2T*Σ3 ⊗ X*T*Q). The action functional
then reads

S(X, A, F) =
∫
Σ3

〈F, dX〉 + 1
2 〈A, dA〉E − 〈F, (ρ ◦ X)A〉 + 1

3! 〈A, [A, A]D〉E , (2.32)

where we view the �elds as di�erential forms A ∈ Ω1(Σ3, X*E), dX ∈ Ω1(Σ3, X*TQ) and F ∈ Ω2(Σ3, X*T*Q),
and the pairings are taken in the pullback bundles together with the exterior products of di�erential forms.
This is the action functional of the Courant sigma-model [57–60], which is a canonical three-dimensional
topological �eld theory associated to any Courant algebroid; its BV quantization thus gives a quantization of
Courant algebroids, though as yet this has not been fully achieved. This AKSZ sigma-model is a vast general-
ization of three-dimensional Chern-Simons gauge theory: For the special case when Q is a point, a Courant
algebroid is just a quadratic Lie algebra, and (2.32) is the classical Chern-Simons functional on the 3-manifold
Σ3.

Remark 2.33. Gauge invariance of the action functional (2.32) under local BRST transformations is equiva-
lent to the axioms and properties of a Courant algebroid structure on the vector bundle E → Q. In particular,
when E = TQ = TQ ⊕ T*Q is the generalized tangent bundle (with general anchor map ρ : TQ → TQ and
Dorfman bracket), the tensor

T(e1, e2, e3) := 〈[e1, e2]D, e3〉TQ ,

for e1, e2, e3 ∈ Γ(TQ), encodes the �uxes of supergravity and the axioms give their Bianchi identities.
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2.6 Gauge Algebras and Courant Brackets

The in�nitesimal symmetries of symplectic Lie n-algebroids are linked to gauge symmetries of the correspond-
ingAKSZ�eld theories.Herewe focus on thosewhichare givenby inner derivations, in a suitable sense,which
we shall generally call ‘gauge transformations’.

For the �rst two rungs of the AKSZ ladder these symmetries are essentially the same and are easy to
describe. For n = 0, an in�nitesimal symmetry of a symplectic manifold (Q, ω) corresponds to a symplectic
vector �eld X ∈ Γ(TQ), that is, LXω = 0; they close a Lie algebra under the Lie bracket of vector �elds by
virtue of the Cartan structure equation

[LX ,LY ]◦ = L[X,Y]TQ

for the Lie derivatives along X, Y ∈ Γ(TQ). TheHamiltonian vector �elds Xf by de�nition satisfy ιXfω = df , for
functions f ∈ C∞(Q), and form a natural subalgebra which is isomorphic to the Lie algebra of smooth func-
tions onQwith the corresponding Poisson bracket; these are called (in�nitesimal) canonical transformations
and we think of them as in�nitesimal ‘gauge symmetries’, generated by the action of functions on Q through
the Poisson bracket. For n = 1, an in�nitesimal symmetry of a Poisson manifold (Q, π) similarly corresponds
to a Poisson vector �eld X ∈ Γ(TQ), that is, LXπ = 0. Again the Hamiltonian vector �elds Xf := π]df form a
Lie algebra isomorphic to the Poisson algebra: [Xf , Xg]TQ = X{f ,g}π for f , g ∈ C∞(Q).

For n = 2, the situation is more involved. Let (E, [ · , · ]D, 〈 · , · 〉E , ρ) be a Courant algebroid on a manifold
Q. By de�nition, the adjoint action of Γ(E) on itself by the Dorfman bracket

LD
e := [e, · ]D ,

for e ∈ Γ(E), is a �rst order di�erential operator whose symbol is the vector �eld ρ(e) on Q. It acts as an
inner derivation of (E, [ · , · ]D, 〈 · , · 〉E), that is, it is an in�nitesimal symmetry of the Courant algebroid. The
operator LD

e : Γ(E) → Γ(E) is called a generalized Lie derivative on the Courant algebroid; the reason for the
terminology is best motivated by recalling the standard Courant algebroid of Example 2.27 where it coincides
with the generalized Lie derivative of generalized geometry.

The collection of generalized Lie derivatives for all sections of E is a vector space which we will think of
as the (in�nitesimal) ‘gauge transformations’ of the Courant algebroid. They should close a Lie algebra with
respect to the commutator bracket on endomorphisms of Γ(E); we refer to this Lie algebra as the gauge algebra
of the Courant algebroid. From the Leibniz identity (2.4) we directly obtain

LD
e1 ◦ L

D
e2 = LD

[e1 ,e2]D + LD
e2 ◦ L

D
e1 , (2.34)

for e1, e2 ∈ Γ(E), which shows that the gauge closure can be expressed in terms of the Dorfman bracket on
sections of E. However, the Dorfman bracket is not skew-symmetric so it is not the natural bracket operation
to use for this algebra. To write a manifestly skew-symmetric closure relation, we subtract from (2.34) the
corresponding identity with e1 and e2 interchanged, and after rearrangement we obtain the gauge algebra[

LD
e1 ,LD

e2

]
◦ = LD

[e1 ,e2]C , (2.35)

where

[e1, e2]C := 1
2
(

[e1, e2]D − [e2, e1]D
)

is the skew-symmetrization of the Dorfman bracket. The skew-symmetric bracket on sections [ · , · ]C is called
a Courant bracket.

In contrast to the Dorfman bracket, the Courant bracket is neither an algebroid bracket nor a Lie bracket,
as it violates both the anchored derivation property (2.2) and the Jacobi identity (which is equivalent to the
Leibniz identity (2.4) for a skew-symmetric bracket). Nevertheless, it can be used to completely characterize
the Courant algebroid axioms [56].
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Proposition 2.36. Let (E, [ · , · ]D, 〈 · , · 〉E , ρ) be a Courant algebroid over a manifold Q. Then the compatibil-
ity conditions on the Dorfman bracket can be equivalently expressed in terms of the Courant bracket as

[e1, f e2]C = f [e1, e2]C +
(
ρ(e1) · f

)
e2 − 1

2 〈e1, e2〉EDf ,

JacC(e1, e2, e3) = DNijC(e1, e2, e3) ,

ρ(e1) · 〈e2, e3〉E =
〈

[e1, e2]C + 1
2 D〈e1, e2〉E , e3

〉
E +
〈
e2, [e1, e3]C + 1

2 D〈e1, e3〉E
〉
E ,

for all e1, e2, e3 ∈ Γ(E) and f ∈ C∞(Q), where

JacC(e1, e2, e3) := [[e1, e2]C, e3]C + [[e3, e1]C, e2]C + [[e2, e3]C, e1]C

is the Jacobiator of the Courant bracket, and

NijC(e1, e2, e3) := 1
3!
(
〈[e1, e2]C, e3〉E + 〈[e3, e1]C, e2〉E + 〈[e2, e3]C, e1〉E

)
is the Nijenhuis tensor of the Courant bracket.

Proof. The three conditions on the Courant bracket easily follow from using (2.24) to express its deviation
from the Dorfman bracket as

[e1, e2]D = [e1, e2]C + 1
2 D〈e1, e2〉E , (2.37)

and substituting this into the anchored derivation property (2.2), the Leibniz identity (2.4), and the metric
compatibility condition (2.20), respectively.

2.7 Flat L∞-Algebras

The formulation of the gauge algebra (2.35) in terms of the Courant bracket still leaves open one puzzle: the
violation of the Jacobi identity by the Courant bracket from Proposition 2.36 appears to be in contradiction
with the vanishing Jacobiator Jac◦ = 0 of the commutator bracket. This in fact poses no problem as one
can explicitly check [DNijC(e1, e2, e3), e]D = 0 for all sections e, e1, e2, e3 ∈ Γ(E). However, the violation
of the Jacobi identity itself in Proposition 2.36, which is controlled by the generalized exterior derivative of
the Nijenhuis tensor of the Courant bracket, suggests a more natural formulation of the gauge algebra and
its closure in the language of strong homotopy Lie algebras, or L∞-algebras, which are homotopy coherent
weakenings of the axioms of a Lie algebra. They generally underlie the gauge structure and dynamics of
classical perturbative �eld theories. This formulation is dual to the BV formalism and is naturally tailored to
control �eld theories with open gauge algebras and reducible symmetries, like the Courant sigma-model, as
well as violations of the Jacobi identities.

We begin by recalling the de�nitions [61].

De�nition 2.38. Let R be a commutative ring. An L∞-algebra over R is a free graded R-module L = ⊕k∈Z Lk
with a degree 1 derivation

Q :�•L*[1] −→�•L*[1]

which is a di�erential, Q2 = 0, making the symmetric algebra�•L*[1] into a commutative dg-algebra over
R, called the Chevalley-Eilenberg algebra of the L∞-algebra L.

An L∞-morphism from an L∞-algebra (L, Q) to an L∞-algebra (L′, Q′) is an algebra homomorphism Ψ :
�•L*[1] −→�•L′*[1] of degree 0 which intertwines the derivations: Ψ ◦ Q = Q′ ◦ Ψ .

By virtue of the Leibniz rule, the derivation is determined entirely by its action on L*[1], hence we may view
it as an R-linear map Q : L*[1] → �•L*[1]. Let Qm : L*[1] → �mL*[1] be the homogeneous components
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of Q, for m = 0, 1, 2, . . . . Let s : L* → L*[1] be the suspension map of degree 1; this is the tautological
isomorphism which identi�es v ∈ L*k with v ∈ L*[1]k−1 := L*k. Taking the dual gives a sequence of maps
Q*m : (�mL*[1])* → (L*[1])* which, after composing with the suspension, we can consider as maps

`m := s−1 ◦ Q*m ◦ s⊗m :∧mL −→ L

for m = 0, 1, 2, . . . , which are called the m-brackets of the L∞-algebra L; they are multilinear graded skew-
symmetric maps of degree 2 −m which satisfy a sequence of higher homotopy Jacobi identities among them,
encoded in the condition Q2 = 0.

A �at L∞-algebra is an L∞-algebra with `0 = 0. In this case `1 is a di�erential and `2 is a cochain map
obeying the Jacobi identity up to exact terms; hence the cohomology of the cochain complex (L, `1) of a �at
L∞-algebra is a graded Lie algebra. A curved L∞-algebra is an L∞-algebra with `0 ≠ 0. Di�erential graded Lie
algebras can be regarded as L∞-algebras with di�erential `1, bracket `2 and `m = 0 for all m > 2.

On general grounds, any dg-manifold (M, Q) is naturally described as a (local) L∞-algebra which com-
pletely captures its algebraic structure: in this case L is the graded vector space of polynomial functions on
M [62]. In these applications, we take R = R and work in an appropriate category of topological vector spaces
with the natural morphisms, tensor products, and so on, though we do not indicate this explicitly in the no-
tation. In particular, L* := HomR(L,R) means the continuous dual to L, and�•L* means the completed
symmetric algebra de�ned using the continuous product and the completed projective tensor product.

Here we are interested in symplectic Lie n-algebroids (M, Q, ω), which have associated �at n-term L∞-
algebras, comprising functions onM of degrees 0, 1, . . . , n − 1, whose m-brackets `m can be computed from
derived brackets with the Hamiltonian γ of the symplectic dg-structure [63]. For n = 0 all brackets are iden-
tically zero, giving the trivial L∞-algebra on a symplectic manifold (Q, ω), while for n = 1 we obtain only
one non-zero bracket `2 = { · , · }π on L = L0 = C∞(Q), which recovers the Lie algebra of Poisson brackets
on a Poisson manifold (Q, π). For n = 2, we recover the L∞-algebra of a Courant algebroid, originally due to
Roytenberg and Weinstein [64].

Theorem 2.39. Let (E, [ · , ·]D, 〈 · , · 〉E , ρ) be a Courant algebroid on a manifold Q. Then there is a �at 2-term
L∞-algebra on L = L−1 ⊕ L0 with

L−1 = C∞(Q) and L0 = Γ(E) ,

whose non-zero brackets are given by

`1(f ) = Df ,

`2(e1, e2) = [e1, e2]C , `2(e1, f ) = 1
2 〈e1,Df 〉E ,

`3(e1, e2, e3) = −NijC(e1, e2, e3) ,

for all f ∈ C∞(Q) and e1, e2, e3 ∈ Γ(E).

Remark 2.40. In the context of gauge algebras, the brackets from L−1 in Theorem 2.39 represent non-trivial
“higher” gauge symmetries, that is, gauge symmetries among the gauge transformations in L0 themselves;
in other words, the gauge symmetries of a Courant algebroid are reducible. This happens as well in the BV
formulation of the Courant sigma-model, which has an open gauge algebra of reducible symmetries. The cor-
responding dual L∞-algebra formalism involves in�nitely many brackets. An explicit L∞-morphism from the
Courant algebroid L∞-algebra of Theorem 2.39 to the gauge L∞-algebra of the Courant sigma-model is con-
structed byGrewcoe and Jonke in [65]; this requires extending the 2-term cochain complex of Theorem 2.39 by
the degree 1 subspace L1 = Γ(TQ) and the anchor map `1|L0 = ρ in order to accomodate the �eld-dependent
gauge algebra of the Courant sigma-model.
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3 Metric Algebroids
In this section we will introduce and study a weakening of the notion of Courant algebroid from Section 2.5,
which is the natural generalization for the algebroids underlying doubled geometry that we consider later
on [16].

3.1 Metric Algebroids and Pre-Courant Algebroids

De�nition 3.1. A metric algebroid over a manifold Q is an algebroid (E, J · , · KD, ρ) with a �brewise non-
degenerate pairing 〈 · , · 〉E ∈ Γ(�2E*) which is preserved by the bracket operation:

ρ(e) · 〈e1, e2〉E = 〈Je, e1KD, e2〉E + 〈e1, Je, e2KD〉E , (3.2)

〈Je, eKD, e1〉E = 1
2 ρ(e1) · 〈e, e〉E , (3.3)

for all e, e1, e2 ∈ Γ(E). The bracket of sections J · , · KD is called a D-bracket.
A metric algebroid morphism from a metric algebroid (E, J · , · KD, 〈 · , · 〉E , ρ) to a metric algebroid

(E′, J · , · K′D, 〈 · , · 〉E′ , ρ′) over the same manifold is an algebroid morphism ψ which is an isometry, that is,
〈 · , · 〉E′ ◦ (ψ × ψ) = 〈 · , · 〉E.

A metric algebroid (E, J · , · KD, 〈 · , · 〉E , ρ) is called regular if its anchor map ρ : E → TQ has constant rank,
and transitive if ρ is surjective. A split metric algebroid is a metric algebroid whose underlying vector bundle
E → Q is the Whitney sum E = A ⊕ A* of a vector bundle A → Q and its dual A* → Q.

Example 3.4. A Courant algebroid is precisely a metric algebroid which is also a Leibniz-Loday algebroid.

Remark 3.5. As can be anticipated from Example 3.4, metric algebroids share some features in commonwith
Courant algebroids. In particular, the anchored derivation property (2.2) again follows from the axiom (3.2),
and the discussion of Remark 2.22 applies verbatum to a metric algebroid to show that the symmetric part of
the D-bracket J · , · KD can be written in terms of the generalized exterior derivativeD : C∞(Q)→ Γ(E) and the
metric 〈 · , · 〉E analogously to (2.24):

Je1, e2KD + Je2, e1KD = D〈e1, e2〉E , (3.6)

for all e1, e2 ∈ Γ(E). For later use, we also note that (3.6) together with the anchored derivation property (2.2)
imply the left derivation property

Jf e1, e2KD = f Je1, e2KD −
(
ρ(e2) · f

)
e1 + Df 〈e1, e2〉E , (3.7)

for all f ∈ C∞(Q) and e1, e2 ∈ Γ(E).

Despite the similarities noted in Remark 3.5, the failure of the Leibniz identity (2.4) for a generic metric alge-
broid means that its anchor map ρ is not a bracket morphism in general. On the other hand, one can impose
the homomorphism property (2.5) independently, and arrive at an important class of (non-Courant) metric
algebroids which resemble Courant algebroids in the closest possible way [66–68].

De�nition 3.8. A metric algebroid (E, J · , · KD, 〈 · , · 〉E , ρ) over a manifold Q is a pre-Courant algebroid if its
anchor map ρ : E → TQ is a bracket morphism:

ρ(Je1, e2KD) = [ρ(e1), ρ(e2)]TQ ,

for all e1, e2 ∈ Γ(E).
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Example 3.9. Let (E, J · , · KD, 〈 · , · 〉E , ρ) be a regular pre-Courant algebroid over amanifoldQ. Let ρ* : T*Q→
E be the map de�ned by 〈ρ*(α), e〉E = 〈ρt(α), e〉 for α ∈ Ω1(Q) and e ∈ Γ(E). Then Im(ρ*) is a coisotropic
subbundle of E and Γ(Im(ρ*)) is an abelian ideal of (Γ(E), J · , · KD). It follows that ρ ◦ ρ* = 0, and there is a
chain complex of bundle morphisms

T*Q ρ*−−→ E ρ−−→ TQ . (3.10)

The pre-Courant algebroid is said to be exact if (3.10) is a short exact sequence.
An isotropic splitting s : TQ → E of an exact pre-Courant algebroid de�nes an isomorphism E ' TQ =

TQ ⊕ T*Q to the generalized tangent bundle of Q, viewed as a split metric algebroid, as well as a 3-form
H ∈ Ω3(Q) by

H(X, Y , Z) =
〈
Js(X), s(Y)KD, s(Z)

〉
E ,

for X, Y , Z ∈ Γ(TQ). The D-bracket J · , · KD maps to the bracket on the splitting E ' TQ given by

JX + α, Y + βKD = [X, Y]TQ + LXβ − ιY dα + ιX ιYH ,

for all X, Y ∈ Γ(TQ) and α, β ∈ Γ(T*Q). This is the Dorfman bracket of the standard Courant algebroid from
Example 2.27, now ‘twisted’ by the 3-form H. However, since J · , · KD violates the Leibniz identity (2.4), the
3-form H is not closed and so does not represent any class in H3(Q,R). In other words, there is no extension
of the Ševera classi�cation of exact Courant algebroids [9, 12] to exact pre-Courant algebroids.

Example 3.11. Let (Q, η) be a pseudo-Riemannian manifold, and let ∇LC denote the Levi-Civita connection
of η. De�ne a bracket operation J · , · KηD : Γ(TQ) × Γ(TQ)→ Γ(TQ) by

η(JX, YKηD , Z) = η(∇LC
X Y −∇LC

Y X, Z) + η(∇LC
Z X, Y)

for vector �eldsX, Y , Z ∈ Γ(TQ). Then (TQ, J · , · KηD , η, 1TQ) is ametric algebroid [3]which is not a pre-Courant
algebroid. This D-bracket can be twisted by any 3-form H ∈ Ω3(Q), similarly to Example 3.9.

De�nition 3.12. An almost D-structure on a metric algebroid (E, J · , · KD, 〈 · , · 〉E , ρ) is an isotropic vector
subbundle L ⊂ E. It is a D-structure if L is also involutive with respect to the D-bracket J · , · KD, that is,
JΓ(L), Γ(L)KD ⊆ Γ(L).

Example 3.13. Let (E, J · , · KD, 〈 · , · 〉E , ρ) be a split exact pre-Courant algebroid over a manifold Q. Then
T*Q ⊂ E is a D-structure.

Given that Courant algebroids correspond to symplectic Lie 2-algebroids (cf. Theorem 2.28), and in view of
the possibility of developing an AKSZ-type sigma-model formulation for quantization of a metric algebroid,
it is natural to wonder what objects metric algebroids correspond to in graded geometry. In the remainder of
this section we develop this correspondence in some detail. Whereas our main result (Theorem 3.53) should
not be surprising to experts, here we follow amore contemporary approach to the geometrization of degree 2
manifolds, see e.g. [69, 70], and hence o�er a new geometric perspective on the correspondence.

3.2 Involutive Double Vector Bundles

In the proof of Proposition 2.15 we saw that degree 1 manifolds correspond geometrically to vector bundles:
if M = (Q,A) is a 1-graded manifold, then M ' E[1] for a vector bundle E → Q. Let us now recall some
well-known facts about the geometrization of degree 2 manifolds. In particular, we discuss the implications
of Batchelor’s Theorem for degree 2 manifolds, see [70].

Theorem 3.14. Any degree n manifold is (non-canonically) isomorphic to a split degree n manifold.
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Let us spell this out explicitly for a degree 2 manifold M = (Q,A) over a manifold Q, where A is its sheaf
of functions. The subsheaves A1 and A2 of A, consisting of functions of degree 1 and 2, respectively, are
locally free �nitely-generated C∞(Q)-modules. Hence there exist vector bundles E → Q and F̄ → Q such that
A1 ' Γ(E*) and A2 ' Γ(F̄*). Abusing notation slightly, the subalgebra of A generated by C∞(Q) ⊕ Γ(E*) is
isomorphic to Γ(∧•E*). Thus

Γ(∧•E*) ∩ Γ(F̄*) ' Γ(∧2E*)

is a proper C∞(Q)-submodule of Γ(F̄*). Since, as a sheaf of functions, Γ(F̄*)/Γ(∧2E*) is again a locally free
�nitely-generated C∞(Q)-module, there is a vector bundle F over Q such that

Γ(F̄*)
/
Γ(∧2E*) ' Γ(F*) .

This gives a short exact sequence of C∞(Q)-modules

0 −→ Γ(∧2E*) −→ Γ(F̄*) −→ Γ(F*) −→ 0 ,

which yields a short exact sequence of the underlying vector bundles over Q:

0 −→∧2E* i−−→ F̄* p−−→ F* −→ 0 . (3.15)

A choice of splitting of either of these sequences gives an isomorphismM ' E[1]⊕ F[2].

Remark 3.16. This construction also yields a one-to-one correspondence (up to isomorphisms) between de-
gree 2 manifolds and pairs of vector bundles (E, F̄) with a surjective vector bundle morphism p̄ : F̄ → ∧2E.
In other words, degree 2 manifolds are in one-to-one correspondence with involutive sequences (see [69]), i.e.
short exact sequences of the form

0 −→ F −−→ F̄ p̄−−→∧2E −→ 0 , (3.17)

where F = Ker(p̄). This in turn aids in understanding the correspondence between degree 2 manifolds and
involutive double vector bundles, and hence the correspondence with metric double vector bundles [69, 70].
For background and details on double vector bundles that we use in the following, see [46].

Remark 3.18. Let M = (Q,A) be a degree 2 manifold. Consider the corresponding involutive double vector
bundle (D; E, E;Q), with core bundle F → Q, given by the commutative diagram of vector bundles

D E

E Q

q1

q2 qE

qE

(3.19)

endowed with a double vector bundle morphism I : D → D such that I2 = 1D , q1 ◦ I = q2, q2 ◦ I = q1 and
core morphism −1F : F → F, where F = Ker(q1) ∩ Ker(q2). The map D → E ×Q E to the �bred product, with
respect to the horizontal and vertical base projections, is a surjective submersion whose kernel is the core
bundle F → Q. Its linear approximation is given by the linear sequence

0 −→ Hom(E, F) −−→ Ê −−→ E −→ 0 , (3.20)

where Γ(Ê) ' Γlin(D), the linear sections of D, that is, the sections of q1 which are bundle morphisms from
the vertical bundle qE to q2 covering sections of the horizontal bundle qE, and Γ(F) ' Γcore(D), the core
sections of D. One shows that the degree −1 and −2 vector �elds on M are given by X−1(M) ' Γ(Ê) and
X−2(M) ' Γ(F).

Following [69], we de�ne a tensorW ∈ Γ(�2Ê* ⊗ F̄) as follows. Choose any splitting of (3.20). Then any
section ê ∈ Γ(Ê) can be written as

ê = τ + e with τ ∈ Γ
(
Hom(E, F)

)
and e ∈ Γ(E) .
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We set
W(ê1, ê2) := τ1(e2) + τ2(e1) .

It is proven in [69] that this de�nition does not depend on the choice of splitting. Notice thatW(ê1, ê2) ∈ Γ(F)
and we identify F with its image in F̄ from (3.17). One further shows

W(ê1, ê2) = [ê1, ê2] ∈ X−2(M) ' Γ(F)

where we regard ê1 and ê2 as degree −1 vector �elds onM.

Remark 3.21. Let D1 be the horizontal vector bundle q1 : D → E in (3.19). Then the space of �brewise linear
functions C∞lin(D1) is endowed with a vector bundle structure such that its dual F̂ := C∞lin(D1)* �ts into the
short exact sequence

0 −→ F −−→ F̂ −−→ E ⊗ E −→ 0 .

It straightforwardly follows that
F̂ '�2E ⊕ F̄ .

A similar construction holds for the vertical vector bundle of (3.19).

We can now discuss the higher analogue of Proposition 2.15 in the degree 2 case, within the weakened setting
appropriate for our later considerations ofmetric algebroids. For this,wenote that the subsheafA3 of degree3
functions is similarly isomorphic to Γ(D̄*) for some vector bundle D̄ → Q. This induces a short exact sequence
of vector bundles given by

0 −→∧3E* i−−→ D̄* −−→ E* ⊗ F* −→ 0 . (3.22)

The following result, proven in [69], provides the characterization of degree 3 functions on degree 2 mani-
folds.

Theorem 3.23. LetM = (Q,A) be a degree 2 manifold. Then there is a one-to-one correspondence between
degree 3 functions γ ∈ A3 and pairs of vector bundle morphisms

γ1 : F −→ E* and γ2 : Ê −→ F̄*

satisfying

1. 〈γ1(ϕ), ê〉 = 〈γ2(ê), ϕ〉 , for all ϕ ∈ F and ê ∈ Ê ;

2. For all τ ∈ Hom(E, F),
γ2 ◦ τ = (γ1 ◦ τ)* − γ1 ◦ τ ∈ ∧2E* ; (3.24)

and
3. The symmetric part of γ2 is controlled byW:

〈γ2(ê1), ê2〉 + 〈γ2(ê2), ê1〉 = γ1
(
W(ê1, ê2)

)
, (3.25)

for all ê1, ê2 ∈ Ê.

Remark 3.26. The morphisms in Theorem 3.23 can be de�ned as follows. Choosing a splitting of the short
exact sequence (3.22), any degree 3 function γ ∈ A3 can be written as

γ = γ1 + γ2

where γ1 ∈ Γ(E* ⊗ F*) and γ2 ∈ Γ(∧3E*). Then we de�ne

γ1(ϕ) := 〈ϕ, γ1〉 ∈ Γ(E*) , (3.27)
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where ϕ ∈ Γ(F) and here 〈 · , · 〉 is the duality pairing between F and the F*-component of E* ⊗ F*. Given a
splitting of the linear sequence (3.20), for any ê = e + τ ∈ Γ(Ê) with e ∈ Γ(E) and τ ∈ Γ(E* ⊗ F), we set

γ2(ê) :=
(

(γ1 ◦ τ)* − γ1 ◦ τ − ιeγ2
)

+ γ*1(e) ∈ Γ(∧2E* ⊕ F*) ' Γ(F̄*) . (3.28)

Notice that only the de�nition of γ2 depends on the choice of splitting of (3.20), but it is shown in [69] that it
is well-de�ned under changes of splitting. It is straightforward to see that the pair (γ1, γ2) de�ned in (3.27)
and (3.28) satisfy all three properties (1)–(3) of Theorem 3.23.

Remark 3.29. The pair of vector bundle morphisms (γ1, γ2) corresponding to γ ∈ A3 can also be character-
ized in terms of the identi�cations X−1(M) ' Γ(Ê) and X−2(M) ' Γ(F) as

γ1(ϕ) = −ϕ · γ and γ2(ê) = −ê · γ ,

where on the right-hand sides ϕ ∈ Γ(F) acts as a degree −2 derivation and ê ∈ Γ(Ê) as a degree −1 derivation
on γ.

3.3 Poisson Structures and VB-Algebroids

To give further structure to the involutive sequences corresponding to degree 2 manifolds, we shall now re-
quire that our graded manifolds are endowed with a Poisson structure.

De�nition 3.30. A degree n Poisson manifold is a degree n manifold M = (Q,A) together with a degree −n
Poisson structure, i.e. an R-bilinear map { · , · } : A ×A→ A satisfying

|{f , g}| = |f | + |g| − n , (3.31)

{f , g} = (−1)(|f |+n) (|g|+n) {g, f} , (3.32)

{f , g h} = {f , g} h + (−1)(|f |+n) |g| g {f , h} , (3.33)

{f , {g, h}} = {{f , g}, h} + (−1)(|f |+n) (|g|+n) {g, {f , h}} , (3.34)

for all homogeneous functions f , g, h ∈ A of degree |f |, |g| and |h|, respectively.

Let CDO(E)→ Q denote the Lie algebroid of covariant di�erential operators on a vector bundle E → Q, i.e. its
sections are di�erential operators acting on Γ(E).

Theorem 3.35. There is a one-to-one correspondence between degree −2 Poisson brackets on a degree 2
manifoldM = (Q,A) and the following structures on its involutive sequence of vector bundles (3.15):

1. A symmetric bilinear pairing 〈 · , · 〉E* on E*;
2. A Lie algebroid (F̄*, [ · , · ]F̄* , ā); and
3. A Lie algebroid action Ψ : F̄* → CDO(E*) preserving 〈 · , · 〉E* such that

[ζ , ε1 ∧ ε2]F̄* =
(
Ψ(ζ ) · ε1

)
∧ ε2 + ε1 ∧

(
Ψ(ζ ) · ε2

)
, (3.36)

and
Ψ(ε1 ∧ ε2) · ε = 〈ε2, ε〉E* ε1 − 〈ε1, ε〉E* ε2 , (3.37)

for all ε, ε1, ε2 ∈ Γ(E*) and ζ ∈ Γ(F̄*).

Proof. Let { · , · } be a degree −2 Poisson bracket onM, and de�ne

〈ε1, ε2〉E* := {ε1, ε2} ,
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for all ε1, ε2 ∈ Γ(E*). Then 〈 · , · 〉E* is symmetric and bilinear by the graded skew-symmetry (3.32) and the
graded derivation rule (3.33). This gives (1).

For any degree 2 function ζ ∈ Γ(F̄*), the graded derivation rule (3.33) implies that {ζ , · } ∈ Der(C∞(Q)) is
a derivation of the algebra of functions C∞(Q), and we can de�ne a vector bundle morphism ā : F̄* → TQ in
terms of the corresponding morphism of C∞(Q)-modules ā : Γ(F̄*)→ Γ(TQ) by

ā(ζ ) · f := {ζ , f} ,

where ā(g ζ ) · f = g ā(ζ ) · f for all f , g ∈ C∞(Q) also because of (3.33). The vector space Γ(F̄*) can be endowed
with the bracket

[ζ1, ζ2]F̄* := {ζ1, ζ2}

for any degree 2 functions ζ1, ζ2 ∈ Γ(F̄*), because {A2,A2} ⊆ A2. This is a skew-symmetric bracket because
of (3.32) and it satis�es the (ungraded) Jacobi identity because the Poisson bracket does ondegree 2 functions,
i.e. [ · , · ]F̄* is a Lie bracket. Lastly, ā : Γ(F̄*)→ Γ(TQ) is a bracket homomorphism:

ā([ζ1, ζ2]F̄* ) · f = {{ζ1, ζ2}, f} = {ζ1, {ζ2, f}} − {ζ2, {ζ1, f}} = [ā(ζ1), ā(ζ2)]TQ · f ,

for all ζ1, ζ2 ∈ Γ(F̄*) and f ∈ C∞(Q), where in the second equality we used the graded Jacobi identity (3.34).
Thus (F̄*, [ · , · ]F̄* , ā) is a Lie algebroid over Q. This gives (2).

De�ne the vector bundle morphism Ψ : F̄* → CDO(E*) by

Ψ(ζ ) · ε := {ζ , ε}

for all ζ ∈ Γ(F̄*) and ε ∈ Γ(E*), where we used {A2,A1} ⊆ A1. The graded derivation rule (3.33) implies that
Ψ takes values in CDO(E*) with symbols given by ā:

Ψ(ζ ) · (f ε) = {ζ , f ε} = f {ζ , ε} + {ζ , f} ε = f
(
Ψ(ζ ) · ε

)
+
(
ā(ζ ) · f

)
ε .

Furthermore, Ψ is a Lie algebroid morphism:

Ψ([ζ1, ζ2]F̄* ) · ε = Ψ(ζ1) ·
(
Ψ(ζ2) · ε

)
− Ψ(ζ2) ·

(
Ψ(ζ1) · ε

)
= [Ψ(ζ1), Ψ(ζ2)]◦ · ε ,

as a result of the graded Jacobi identity (3.34). The graded Jacobi identity also gives

ā(ζ ) · 〈ε1, ε2〉E* = 〈Ψ(ζ ) · ε1, ε2〉E* + 〈ε1, Ψ(ζ ) · ε2〉E* ,

and so the Lie algebroid action Ψ preserves the symmetric bilinear pairing 〈 · , · 〉E* . Lastly, the equations
(3.36) and (3.37) are immediate consequences of the graded derivation rule (3.33). This gives (3).

Conversely, given (1)–(3), we de�ne the Poisson brackets {A2,A2} and {A2,A0} from the Lie algebroid
on F̄*, {A2,A1} from the 〈 · , · 〉E* -preserving Lie algebroid action of F̄* on E*, {A1,A1} from the symmetric
bilinear form 〈 · , · 〉E* on E*, andwe set {A1,A0} = 0. These brackets are then extended to arbitrary functions
by the graded derivation rule.

Corollary 3.38. Under the correspondence of Theorem 3.35, the involutive sequence

0 −→∧2E* i−−→ F̄* p−−→ F* −→ 0

is a short exact sequence of Lie algebroids.

Proof. The equations (3.36) and (3.37) give

[ε1 ∧ ε2, ε3 ∧ ε4]F̄* = 〈ε2, ε3〉E* ε1 ∧ ε2 − 〈ε1, ε3〉E* ε2 ∧ ε4 + 〈ε2, ε4〉E* ε3 ∧ ε1 − 〈ε1, ε4〉E* ε3 ∧ ε2 ,

hence∧2E* is a Lie subalgebroid of F̄*. Thus∧2E* is a Lie algebroid ideal of F̄* because of the involutivity
of∧2E* and (3.36). The restriction of the anchor map ā to∧2E* vanishes:

ā(ε1 ∧ ε2) · f = {ε1 ∧ ε2, f} = {f , ε1} ∧ ε2 + ε1 ∧ {f , ε2} = 0
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because {f , ε1} = {f , ε2} = 0 for degree reasons. Hence F* can be endowed with a Lie algebroid given by the
bracket

[p(ζ1), p(ζ2)]F* := p([ζ1, ζ2]F̄* )

and anchor a : F* → TQ through which ā : F̄* → TQ factors:

ā = a ◦ p .

Therefore (3.15) is a short exact sequence of Lie algebroids.

Remark 3.39. Recall [46] that a VB-algebroid is a Lie algebroid object in the category of vector bundles, and
that a double vector bundle is precisely a VB-algebroid with trivial Lie algebroid structures. Theorem 3.35
implies that the horizontal dual to (3.19), that is, the double vector bundle

D*E E

F* Q

qE

qF* qE

qF
*

with core bundle E* → Q, can be endowed with a VB-algebroid structure as follows: The anchor map
aD : D*E → TE is de�ned by

aD(ε1) · f := 0 , aD(ε1) · ε2 := 〈ε1, ε2〉E* , aD(ζ ) · f := ā(ζ ) · f , aD(ζ ) · ε1 := Ψ(ζ ) · ε1 ,

for all f ∈ C∞(Q), ε1, ε2 ∈ Γ(E*) and ζ ∈ Γ(F̄*); here we identify Γ(E*) ' C∞lin(E). The VB-algebroid bracket
is given by

[ε1, ε2]D := 0 , [ζ1, ε1]D := Ψ(ζ1) · ε1 and [ζ1, ζ2]D := [ζ1, ζ2]F̄* ,

for all ε1, ε2 ∈ Γ(E*) and ζ1, ζ2 ∈ Γ(F̄*); here we identify Γ(E*) ' Γcore(D*E) and extend the VB-algebroid
bracket to any section of F̂* '�2E* ⊗ F̄* by the derivation rule. For a general statement about the one-to-
one correspondence between degree 2 Poisson manifolds and metric VB-algebroids, see [69, 70].

Remark 3.40. From Remark 3.39 it follows that the double vector bundle (D; E, E;Q) given by (3.19) is en-
dowed with a double linear Poisson structure, i.e. a Poisson structure which is linear with respect to both
vector bundle structures. The bundle D is further endowedwith a Lie algebroid di�erential dD induced by the
VB-algebroid structure on D*E . There is an isomorphism Φ : D → T*E to the double vector bundle

T*E E

E* Q

qE

qE* qE

qE
*

(3.41)

with core bundle T*Q. Its linear sequence is given by

0 −→ E ⊗ T*Q −−→ J1(E) −−→ E −→ 0 , (3.42)

where J1(E) is the �rst order jet bundle of E. In particular, the double linear Poisson structure on (D; E, E;Q)
is the pullback by the isomorphismΦ : D → T*E of the canonical Poisson structure on T*E. Hence the vector
space of linear sections Γlin(D) ' Γ(Ê) is spanned by sections of the form dDε, with ε ∈ Γ(E*), while the
vector space of core sections Γcore(D) ' Γ(F) is spanned by sections of the form df , with f ∈ C∞(Q).

We are now ready to look at the interplay between degree 3 functions and degree −2 Poisson structures.
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Proposition 3.43. Let γ ∈ A3 be a degree 3 function on a degree 2 Poisson manifold (M, { · , · }), and let
(γ1, γ2) be its characteristic pair of vector bundle morphisms. Then

γ1(df ) = {γ, f} and γ2(dDε) = {γ, ε} , (3.44)

for all f ∈ C∞(Q) and ε ∈ Γ(E*).

Proof. Choosing a splitting of the short exact sequence (3.22), we can write γ ∈ A3 as

γ = ε0 ⊗ ζ + ε1 ∧ ε2 ∧ ε3 , (3.45)

where εi ∈ Γ(E*) and ζ ∈ Γ(F*). Then

{γ, f} = {ε0 ⊗ ζ , f} = ε0 {ζ , f} = ε0 〈ζ , df 〉 = γ1(df ) ,

where we identify df with its corresponding section of F, and here 〈 · , · 〉 is the duality pairing between F and
F*. The last equality follows from (3.27).

The second equality is obtained from calculating

{γ, ε} = 〈ε0, ε〉E* ζ − ε0 ∧ {ζ , ε} + 〈ε, ε1〉E* ε2 ∧ ε3 − 〈ε, ε2〉E* ε1 ∧ ε3 + 〈ε, ε3〉E* ε1 ∧ ε2 .

On the other hand, by identifying dDε with its corresponding section in Γ(Ê) and using (3.28), we have

γ2(dDε) = 〈ε0, ε〉E* ζ − ε0 ∧ 〈ζ , dDε〉 + 〈ε, ε1〉E* ε2 ∧ ε3 − 〈ε, ε2〉E* ε1 ∧ ε3 + 〈ε, ε3〉E* ε1 ∧ ε2 .

The second equality now follows from
{ζ , ε} = 〈ζ , dDε〉 ,

where here 〈 · , · 〉 is the duality pairing between F and F* for the component of dDε in Γ(E* ⊗ F*).

3.4 Symplectic 2-Algebroids and Symplectic Almost Lie 2-Algebroids

In order to establish a correspondence with pseudo-Euclidean vector bundles, we require our graded mani-
fold to be endowed with a symplectic structure.

De�nition 3.46. A symplectic degree n manifold is a degree n manifold M = (Q,A) with degree −n Poisson
structure { · , · } such that, for all x ∈ Q, there is an open subset U ⊂ Q containing x and local coordinates
(xi , wα), where xi are degree 0 coordinates and wα are coordinates of degrees 1, . . . , n, such that the matrix
of the degree 0 components of the Poisson bracket at x,

{
(xi , wα), (xj , wβ)

}0(x), is non-degenerate.

We are now ready to discuss the correspondence between symplectic degree 2 manifolds and pseudo-
Euclidean vector bundles together with their gauge symmetries, through a result due to Roytenberg [37].

Proposition 3.47. There is a one-to-one correspondence between symplectic degree 2 manifolds (M, { · , · })
and pseudo-Euclidean vector bundles (E*, 〈 · , · 〉E* ). The associated Lie algebroid (F*, [ · , · ]F* , a) is isomor-
phic to the tangent Lie algebroid (TQ, [ · , · ]TQ, 1TQ), and its involutive sequence of Lie algebroids

0 −→∧2E* i−−→ F̄* p−−→ F* −→ 0

is isomorphic (as Lie algebroids) to the Atiyah sequence of (E*, 〈 · , · 〉E* ):

0 −→ so(E*) −−→ At(E*, 〈 · , · 〉E* ) −→ TQ −→ 0 .

Proof. Let (xi , εa , ζ µ) be local coordinates onM = (Q,A) of degrees (0, 1, 2). Since the Poisson bracket { · , · }
is symplectic, it follows that

det
(
{ζ µ , xi}(x)

)
≠ 0 and det

(
{εa , εb}(x)

)
≠ 0 , (3.48)
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for all x ∈ Q. The second condition in (3.48) implies that the symmetric bilinear pairing 〈 · , · 〉E* on E* con-
structed in Theorem 3.35 is non-degenerate, so it endows E* with the structure of a pseudo-Euclidean vector
bundle overQ. The �rst condition in (3.48) shows that the anchormap a : F* → TQ de�ned in Corollary 3.38 is
an isomorphism. From Theorem 3.35 and Corollary 3.38 there is a morphism of Lie algebroid sequences given
by

∧2E* F̄* F*

so(E*) At(E*, 〈 · , · 〉E* ) TQ

i p

Ψ a

From the non-degeneracy of 〈 · , · 〉E* it follows that∧2E* ' so(E*). Since this is a commutative diagram and
a is an isomorphism, it follows that Ψ : F̄* → At(E*, 〈 · , · 〉E* ) is an isomorphism as well.

Remark 3.49. Since a symplectic degree 2 manifold is associated with a pseudo-Euclidean vector bundle
(E*, 〈 · , · 〉E* ), the constructions here and in the following can be made directly on the vector bundle E, as
discussed in [37], because of the isomorphism E ' E* induced by the pseudo-Euclidean metric.

We are �nally ready to discuss the correspondence with metric algebroids. For this, we introduce the appro-
priate weakening of the notion of symplectic Lie n-algebroid from De�nition 2.9.

De�nition 3.50. A symplectic n-algebroid is a symplectic degree n manifold (M, { · , · }) endowed with a
degree n+ 1 function γ ∈ An+1, or equivalently (by Remark 2.8) a degree 1 symplectic vector �eld Q ∈ X1(M).

Example 3.51. Asymplectic Lie n-algebroid is precisely a symplectic n-algebroidwhich is also a dg-manifold.

Remark 3.52. Symplectic n-algebroids are called ‘symplectic nearly Lie n-algebroids’ (for n = 2) in [71].
In [30] they are refered to as ‘symplectic pre-NQ-manifolds of degree n’, while in [31] they are called ‘pre-
QP-manifolds’.

The main result of this section, inspired by [69], is the following weakening of Theorem 2.28.

Theorem 3.53. There is a one-to-one correspondence between symplectic 2-algebroids and metric alge-
broids.

Proof. Let (M, { · , · }, γ) be a symplectic 2-algebroid, and consider its involutive sequence of Lie algebroids.
By Proposition 3.47, the vector bundle E* → Q is endowed with a �brewise pseudo-Euclideanmetric 〈 · , · 〉E* .
De�ne

ρ(ε) · f := −{{γ, ε}, f} ,

for all ε ∈ Γ(E*) and f ∈ C∞(Q). By the derivation property of the Poisson bracket, this de�nes a map

ρ : Γ(E*) −→ Der
(
C∞(Q)

)
,

which is a morphism of C∞(Q)-modules and thus induces a vector bundle morphism

ρ : E* −→ TQ .

The D-bracket on E* is given by
Jε1, ε2KD := −{{γ, ε1}, ε2}

for all ε1, ε2 ∈ Γ(E*). The compatibility conditions (3.2) and (3.3) of De�nition 3.1 follow straightforwardly
from the graded Jacobi identity for the graded Poisson bracket. As a further check, the anchored deriva-
tion property (2.2) for J · , · KD follows from the graded derivation property of the Poisson bracket. Thus
(E*, J · , · KD, 〈 · , · 〉E* , ρ) is a metric algebroid on Q.
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For the converse statementwehave towork a bit harder. Let (E*, J · , · KD, 〈 · , · 〉E* , ρ) be ametric algebroid
over Q. By Proposition 3.47, the underlying pseudo-Euclidean vector bundle corresponds to a symplectic de-
gree 2 manifold (M, { · , · }). De�ne the pair of vector bundle morphisms (γ1, γ2) by the dual pairings

〈γ1(df ), dDε〉 := ρ(ε) · f , (3.54)

〈γ2(dDε), df 〉 := ρ(ε) · f , (3.55)

〈γ2(dDε1), dDε2〉 := Jε1, ε2KD . (3.56)

We shall prove that the pair (γ1, γ2) satis�es the properties (1)–(3) of Theorem 3.23, and hence characterizes
a degree 3 function γ onM. Property (1) of Theorem 3.23 follows immediately from the de�nitions (3.54) and
(3.55).

For property (2), we compute

〈(ε1 ⊗ df )* ◦ γ*1 − γ1 ◦ (ε1 ⊗ df ), dDε2〉 = − 〈γ1(df ), dDε2〉 ε1 + γ1(df ) 〈ε1, ε2〉E*

= −
(
ρ(ε2) · f

)
ε1 + Df 〈ε1, ε2〉E* ,

where we use the usual de�nition of the generalized exterior derivativeD in the metric algebroid given by

〈Df , ε〉E* := ρ(ε) · f .

On the other hand, from the Leibniz rule for the Lie algebroid di�erential dD and the left derivation property
(3.7) of the D-bracket it follows that

〈γ2(ε1 ⊗ df ), dDε2〉 = 〈γ2(dD(f ε1) − f dDε1), dDε2〉

= Jf ε1, ε2KD − f Jε1, ε2KD

= −
(
ρ(ε2) · f

)
ε1 + Df 〈ε1, ε2〉E* ,

and hence (3.24) follows.
Finally, for property (3) of Theorem 3.23, we use (3.6) to get

〈γ2(dDε1), dDε2〉 + 〈γ2(dDε2), dDε1〉 = Jε1, ε2KD + Jε2, ε1KD = D 〈ε1, ε2〉E* .

On the other hand, by choosing a splitting of the linear sequence (3.42) we can decompose dDε as dDε =
(dDε −∇ε) +∇ε where∇ε ∈ Γ(E* ⊗ T*Q) de�nes a metric connection on (E*, 〈 · , · 〉E* ). Then we compute

W(dDε1, dDε2) = 〈∇ε1, ε2〉 + 〈∇ε2, ε1〉 = d 〈ε1, ε2〉E* ,

which gives
γ1
(
W(dDε1, dDε2)

)
= D 〈ε1, ε2〉E* ,

and therefore (3.25) follows.

Remark 3.57. By the de�nition of the vector bundle morphism γ2 in (3.55) and (3.56), we have

〈γ2(dDε1), dD(f ε2)〉 = Jε1, f ε2KD = f Jε1, ε2KD +
(
ρ(ε1) · f

)
ε2 .

This is consistent with the Leibniz rule for the Lie algebroid di�erential dD:

〈γ2(dDε1), dD(f ε2)〉 = 〈γ2(dDε1), f dDε2 + ε2 ⊗ df 〉 = f Jε1, ε2KD +
(
ρ(ε1) · f

)
ε2 .

From Proposition 3.43 it also follows that the structure maps of the metric algebroid can be written in
terms of γ2 using the Poisson bracket and the Lie algebroid di�erential as

ρ(ε) · f = −{γ2(dDε), f} and Jε1, ε2KD = −{γ2(dDε1), ε2} .



Algebroids, AKSZ Constructions and Doubled Geometry | 379

Remark 3.58. Introduce the map

LeibD : Γ(E*) × Γ(E*) × Γ(E*) −→ Γ(E*)

which measures the failure of the Leibniz identity (2.4) for the D-bracket J · , · KD (and coincides with the Ja-
cobiator for a skew-symmetric bracket); it is de�ned by

LeibD(ε1, ε2, ε3) := Jε1, Jε2, ε3KDKD − JJε1, ε2KD, ε3KD − Jε2, Jε1, ε3KDKD , (3.59)

for ε1, ε2, ε3 ∈ Γ(E*). Similarly, we introduce the map

homρ : Γ(E*) × Γ(E*) −→ Γ(TQ)

which measures the failure of the anchor map ρ : E* → TQ from being a bracket morphism to the Lie bracket
of vector �elds; it is de�ned by

homρ(ε1, ε2) := ρ
(
Jε1, ε2KD

)
−
[
ρ(ε1), ρ(ε2)

]
TQ . (3.60)

The map (3.59) is given in terms of third order higher derived brackets generated by {γ, γ} as

LeibD(ε1, ε2, ε3) = −1
2 {{{{γ, γ}, ε1}, ε2}, ε3}

on the corresponding symplectic 2-algebroid (M, { · , · }, γ), while (3.60) is given by

homρ(ε1, ε2) · f = 1
2 {{{{γ, γ}, f}, ε1}, ε2} ,

for all f ∈ C∞(Q).
As noted in [71] (see also [72]), the maps (3.59) and (3.60) are related by

LeibD(ε1, ε2, f ε3) − f LeibD(ε1, ε2, ε3) = −
(
homρ(ε1, ε2) · f

)
ε3 ,

for all f ∈ C∞(Q). In other words, the lack of tensoriality of LeibD in its third entry measures the failure of the
anchor map from being a bracket homomorphism. Similarly

homρ(f ε1, ε2) − f homρ(ε1, ε2) = 〈ε1, ε2〉E* ρ(Df ) ,

so the lack of tensoriality of homρ in its �rst entry measures the violation of the condition ρ ◦ D = 0, or
equivalently of (2.26).

Remark 3.58 and De�nition 3.8 motivate the following notion [71].

De�nition 3.61. A symplectic 2-algebroid (M, { · , · }, γ) is a symplectic almost Lie 2-algebroid if

{{γ, γ}, f} = 0 ,

for all f ∈ C∞(Q), or in other words if the square Q2 of the corresponding Hamiltonian vector �eld Q = {γ, · }
preserves the sheaf of functions of degree 0.

Corollary 3.62. There is a one-to-one correspondence between symplectic almost Lie 2-algebroids and pre-
Courant algebroids.

4 Para-Hermitian Geometry
The natural home for metric algebroids, and in particular split exact pre-Courant algebroids, is provided by
para-Hermitian geometry. This provides a precisemathematical framework for a global notion of ‘doubled ge-
ometry’ in string theory, as originally suggested by Vaisman [16, 73], and further developed by [21–23, 74–77].
In this setting, double �eld theory is formulated on an almost para-Hermitian manifold, as we shall discuss
in Section 6.
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4.1 Para-Hermitian Vector Bundles

We start with an overview of themain ideas and their relation to some of the concepts introduced in Sections 2
and 3.

De�nition 4.1. Let E → Q be a vector bundle of even rank 2d over a manifold Q. A para-complex structure
on E is a vector bundle automorphism K ∈ Aut(E) covering the identity such that K2 = 1E, K ≠ ± 1E, and the
± 1-eigenbundles of K have equal rank d. The pair (E, K) is a para-complex vector bundle.

If in addition E admits a �brewise metric 〈 · , · 〉E ∈ Γ(�2E*) of split signature (d, d) such that

〈K(e1), K(e2)〉E = − 〈e1, e2〉E ,

for all e1, e2 ∈ Γ(E), then the pair (K, 〈 · , · 〉E) is a para-Hermitian structure on E and the triple (E, K, 〈 · , · 〉E)
is a para-Hermitian vector bundle.

A para-Hermitian bundle morphism from a para-Hermitian vector bundle (E, K, 〈 · , · 〉E) to a para-
Hermitian vector bundle (E′, K′, 〈 · , · 〉E′ ) over the same manifold is an isometry ψ : (E, 〈 · , · 〉E) →
(E′, 〈 · , · 〉E′ ) covering the identity which intertwines the para-complex structures: ψ ◦ K = K′ ◦ ψ.

The ± 1-eigenbundles L± of K split the vector bundle E into a Whitney sum

E = L+ ⊕ L− ,

such that L± are maximally isotropic with respect to the �brewise metric 〈 · , · 〉E .

Remark 4.2. Let E → Q be a vector bundle of rank 2d endowed with a split signature metric 〈 · , · 〉E, and L
a maximally isotropic subbundle of E. Then the short exact sequence

0 −→ L −→ E −→ E/L −→ 0 (4.3)

always admits a maximally isotropic splitting. This determines a para-Hermitian structure on E. All maxi-
mally isotropic splittings of the short exact sequence (4.3) give isomorphic para-Hermitian structures on E.

The compatibility condition between 〈 · , · 〉E and K in De�nition 4.1 is equivalent to

〈K(e1), e2〉E = − 〈e1, K(e2)〉E ,

for all e1, e2 ∈ Γ(E). A para-Hermitian vector bundle E is therefore endowed with a non-degenerate funda-
mental 2-form ω ∈ Γ(∧2E*) given by

ω(e1, e2) = 〈K(e1), e2〉E ,

for all e1, e2 ∈ Γ(E). The eigenbundles L± ⊂ E are also maximally isotropic with respect to ω.

Example 4.4. Let E = A ⊕ A* be the Whitney sum of a vector bundle A and its dual A* over a manifold Q. It
is naturally endowed with the �brewise split signature metric

〈a + a∨, b + b∨〉A⊕A* = 〈 a, b∨〉 + 〈b, a∨〉 ,

for all a, b ∈ Γ(A) and a∨, b∨ ∈ Γ(A*), where 〈 · , · 〉 is the canonical dual pairing between sections of A and
sections of A*. The natural para-complex structure K on E is given by

K(a + a∨) = a − a∨ ,

so that A and A* are the respective ± 1-eigenbundles. Then 〈 · , · 〉A⊕A* and K are compatible in the sense of
De�nition 4.1, and the subbundles A and A* are maximally isotropic with respect to 〈 · , · 〉A⊕A* . Thus we
obtain a fundamental 2-form

ω(a + a∨, b + b∨) = 〈 a, b∨〉 − 〈b, a∨〉 ,
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which is the additional natural non-degenerate pairing that can be de�ned in this case.
This construction applies to any split metric algebroid (E, J · , · KD, 〈 · , · 〉E , ρ). A special instance is the

generalized tangent bundle E = TQ of Example 2.27, for which A = TQ.

Example 4.5. Let (E, J · , · KD, 〈 · , · 〉E , ρ) be an exact pre-Courant algebroid on Q speci�ed by the short exact
sequence (3.10) from Example 3.9, with �brewise metric 〈 · , · 〉E and anchor map ρ : E → TQ. From the
de�nition of ρ* and exactness of the sequence (3.10), it follows that the subbundle Im(ρ*) ⊂ E, which is
isomorphic to T*Q, is maximally isotropic with respect to 〈 · , · 〉E . A choice of isotropic splitting s : TQ→ E
of (3.10) gives a Whitney sum decomposition

E = Im(s)⊕ Im(ρ*) ,

with an associated para-complex structure de�ned by

Ks
(
s(X) + ρ*(α)

)
= s(X) − ρ*(α) ,

for all X ∈ Γ(TQ) and α ∈ Γ(T*Q). The para-complex structure Ks is compatible with the metric 〈 · , · 〉E , and
in this way E is endowed with a para-Hermitian structure. This para-Hermitian structure is isomorphic to the
para-Hermitian structure on the generalized tangent bundle TQ from Example 4.4 with A = TQ.

4.2 Generalized Metrics and Born Geometry

We shall now introduce a notion of generalized metric associated to a para-Hermitian structure on a vector
bundle.

De�nition 4.6. Let E → Q be a vector bundle endowed with a �brewise pseudo-Euclidean metric 〈 · , · 〉E. A
generalized (Euclidean) metric on E is an automorphism I ∈ Aut(E) such that I2 = 1E, I ≠ ± 1E, and

H(e1, e2) := 〈I(e1), e2〉E ,

for all e1, e2 ∈ Γ(E), de�nes a �brewise Euclidean metricH on E.

A generalized metric determines a decomposition

E = V+ ⊕ V−

into the ± 1-eigenbundles of I, such that the subbundle V+ ⊂ E is maximally positive-de�nite with respect to
themetric 〈 · , · 〉E and V− is the orthogonal complement of V+ with respect to 〈 · , · 〉E . Any generalizedmetric
induces an isomorphismH[ ∈ Hom(E, E*) which satis�es the compatibility condition

〈H[(e1),H[(e2)〉
−1
E = 〈e1, e2〉E

with the �brewise metric 〈 · , · 〉E.
This de�nition takes the following concrete form, proven in [76], when the metric 〈 · , · 〉E is part of a

para-Hermitian structure.

Proposition 4.7. Let (E, K, 〈 · , · 〉E) be a para-Hermitian vector bundle over amanifoldQ. A generalizedmet-
ric I ∈ Aut(E) de�nes a unique pair (g+, b+), where g+ ∈ Γ(�2L*+) is a �brewise Euclidean metric on the
+1-eigenbundle L+ ⊂ E and b+ ∈ Γ(∧2L*+) is a 2-form on L+. Conversely, any such pair (g+, b+) uniquely
de�nes a generalized metric on (E, K, 〈 · , · 〉E).

Since the eigenbundles L± are bothmaximally isotropic with respect to 〈 · , · 〉E, and V+ is maximally positive-
de�nite, it follows that L± ∩ V+ = 0 and L± ∩ V− = 0. The pair (g+, b+) induces a �brewise metric g− on L−
by

g−(e−, e′−) = g−1
+
(
〈e−, · 〉E , 〈e

′
−, · 〉E

)
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and a skew-symmetric vector bundle map B+ ∈ Hom(L+, L−) by

〈B+(e+), e′+〉E = b+(e+, e′+) = − 〈e+, B+(e′+)〉E ,

for all e±, e′± ∈ Γ(L±). In the splitting E = L+⊕L− associatedwith the para-complex structure K, the Euclidean
metricH then assumes the matrix form

H =
(
g+ + Bt

+ g− B+ −Bt
+ g−

−g− B+ g−

)
,

where Bt
+ : L*− → L*+ is the transpose map.

Example 4.8. Let E = TQ = TQ ⊕ T*Q be the generalized tangent bundle over a manifold Q. A generalized
metric I ∈ Aut(TM) is equivalent to a Riemannian metric g and a 2-form b on Q. This is a special case of the
notion of generalized metric in generalized geometry [9, 78], andH assumes the standard form

H =
(
g + b g−1 b −b g−1

−g−1 b g−1

)
with respect to the splitting TQ = TQ⊕ T*Q.

De�nition 4.9. A compatible generalized metric on a para-Hermitian bundle (E, K, 〈 · , · 〉E) is a generalized
metricH0 on E which is compatible with the fundamental 2-form ω:

ω−1(H[
0(e1),H[

0(e2)
)

= −ω(e1, e2) ,

for all e1, e2 ∈ Γ(E). The triple (K, 〈 · , · 〉E ,H0) is aBorn geometry on E and the quadruple (E, K, 〈 · , · 〉E ,H0)
is a Born vector bundle.

A Born geometry is a particular type of generalized metric which can be concretely characterized as fol-
lows [76].

Proposition 4.10. ABorn geometry on a para-Hermitian vector bundle (E, K, 〈 · , · 〉E) is a generalizedmetric
H0 speci�ed solely by a �brewise metric g+ on the eigenbundle L+.

In other words, the compatible EuclideanmetricH0 can be regarded as a choice of ametric on the subbundle
L+ in the splitting associated with K, where in matrix notation it reads

H0 =
(
g+ 0
0 g−

)
. (4.11)

4.3 B-Transformations

To classify the distinct splittings of an exact pre-Courant algebroid, as well as to relate generic general-
ized metrics to the compatible generalized metrics of a Born geometry, we introduce the notion of a B-
transformation for a para-Hermitian vector bundle (E, K, 〈 · , · 〉E). Let us �x the splitting E = L+⊕ L− induced
by the para-complex structure K. Then any section e ∈ Γ(E) decomposes as e = e+ + e− with e± ∈ Γ(L±), and
K ∈ Aut(E) can be written as K = 1L+ − 1L− .

De�nition 4.12. Let (E, K, 〈 · , · 〉E) be a para-Hermitian vector bundle on a manifold Q. A B+-transformation
is an isometry eB+ : E → E of 〈 · , · 〉E covering the identity which is given in matrix notation by

eB+ =
(

1L+ 0
B+ 1L−

)
: E −→ E
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in the chosen splitting induced by K, where B+ : L+ → L− is a skew-symmetric map:

〈B+(e1), e2〉E = − 〈e1, B+(e2)〉E ,

for all e1, e2 ∈ Γ(E).

A B+-transformation induces another para-complex structure from the para-Hermitian vector bundle
(E, K, 〈 · , · 〉E) given by the pullback KB+ = K − 2 B+, which can be cast in the form

KB+ = e−B+ ◦ K ◦ eB+ =
(

1L+ 0
−2 B+ −1L−

)
.

Then K2
B+ = 1E , since B+(K(e)) = −K(B+(e)) and B+(B+(e)) = 0, for all e ∈ Γ(E), and KB+ satis�es the com-

patibility condition 〈KB+ (e1), KB+ (e2)〉E = − 〈e1, e2〉E with 〈 · , · 〉E because of the skew-symmetry property of
B+. Thus (KB+ , 〈 · , · 〉E) is a para-Hermitian structure on E. Only the −1-eigenbundle of the original splitting
E = L+ ⊕ L− is preserved by a B+-transformation, while the +1-eigenbundle changes.

To understand how the fundamental 2-form ω changes under a B+-transformation, we note that the en-
domorphism B+ de�nes a 2-form b+ ∈ Γ(∧2L*+) by

b+(e1, e2) = 〈B+(e1), e2〉E ,

for all e1, e2 ∈ Γ(E). The fundamental 2-form ωB+ of (KB+ , 〈 · , · 〉E) is obtained by computing ωB+ (e1, e2) =
〈KB+ (e1), e2〉E , which gives

ωB+ = ω − 2 b+ .

Thus a B+-transformation does not generally preserve the closure or non-closure of the fundamental 2-form.

Remark 4.13. A completely analogous discussion applies to a B−-transformation, de�ned by a skew-
symmetric map B− : L− → L+ similarly to De�nition 4.12, by interchanging the roles of the eigenbundles
L+ and L−.

Remark 4.14. If (E, 〈 · , · 〉E , L) is an even rank vector bundle endowed with a split signature metric and a
choice of maximally isotropic subbundle, see Remark 4.2, then themaximally isotropic splittings of the short
exact sequence (4.3) are mapped into each other via B+-transformations which preserve L.

Example 4.15. Recall from Example 4.5 that every splitting of an exact pre-Courant algebroid
(E, J · , · KD, 〈 · , · 〉E , ρ) is associated with a para-Hermitian structure on E. By Remark 4.14, any two
splittings of an exact pre-Courant algebroid are related by a B+-transformation. Each distinct isotropic split-
ting of (3.10) is associated with a di�erent 3-form H ∈ Ω3(Q). A B+-transformation of an exact pre-Courant
algebroid is generated by a 2-form b ∈ Ω2(Q), which preserves the D-bracket J · , · KD if b is a closed 2-form.
When b is not closed the corresponding D-bracket maps to the Dorfman bracket twisted by H + db.

Let us �nally discuss the B+-transformation of a compatible generalized metric of a Born geometry. A
compatible generalized metric H0 of a para-Hermitian structure (K, 〈 · , · 〉E) on E transforms under a
B+-transformation to the compatible generalized metric HB+ of the pullback para-Hermitian structure
(KB+ , 〈 · , · 〉E) on E given by

H[
B+ =

(
e−B+

)t ◦H[
0 ◦ e−B+ .

Recalling thatH0 takes the diagonal form (4.11), we then have [76]

Proposition 4.16. A generalized metric I ∈ Aut(E) on a para-Hermitian vector bundle (E, K, 〈 · , · 〉E) corre-
sponds to a choice of a Born geometry (K, 〈 · , · 〉E ,H0) and a B+-transformation.
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4.4 Almost Para-Hermitian Manifolds

The special casewhere E = TM is the tangent bundle of amanifoldM inDe�nition4.1 is particularly important
because it allows one to formulate conditions for the integrability of the eigenbundles L±, and hence on the
possibility that M is a foliated manifold.

De�nition 4.17. An almost para-Hermitian manifold (M, K, η) is a manifold M of even dimension 2d with a
para-Hermitian structure (K, η) on its tangent bundle TM.

The para-complex structure K ∈ Aut(TM) is equivalent to the splitting of the tangent bundle

TM = L+ ⊕ L−

of the manifold M into the Whitney sum of two distributions L± of the same constant rank d, identi�ed as
the ± 1-eigenbundles of K. If the eigenbundles L± are both integrable, that is, [Γ(L±), Γ(L±)]TM ⊆ Γ(L±), then
(M, K, η) is a para-Hermitian manifold; in this instance, by Frobenius’ Theorem, M admits two regular foli-
ations F±, such that L± = TF±. However, the integrability conditions for L+ and L− are independent of each
other [3, 74]: one of themmay be integrable while the othermay not. This is the situation thatmost commonly
occurs in examples, and in this case M admits only one foliation.

The fundamental 2-form ω of an almost para-Hermitianmanifold (M, K, η) de�nes an almost symplectic
structure onM; the 3-form dω describes the ‘generalized �uxes’ of double �eld theory onM [76]. If ω is sym-
plectic, that is, dω = 0, then (M, K, η) is an almost para-Kähler manifold. In this case, since the subbundles
L± are maximally isotropic with respect to ω, they are Lagrangian subbundles of the tangent bundle TM; if
one of them is integrable, then M admits a Lagrangian foliation with respect to the symplectic structure ω.

Example 4.18. Let M be the total space of the cotangent bundle π : T*Q → Q of a d-dimensional manifold
Q, endowed with the canonical symplectic 2-form ω0. Then almost para-Kähler structures on M correspond
to isotropic splittings of the short exact sequence of vector bundles

0 −→ Ker(π*)
i−→ TM π*−→ π*(TQ) −→ 0

with respect to ω0, where i is the inclusion of the vertical vector subbundle Ker(π*) into TM. Such a splitting
s : π*(TQ)→ TM de�nes an Ehresmann connection on M with

TM = Im(s)⊕ Ker(π*)

the Whitney sum decomposition of the tangent bundle TM into the ± 1-eigenbundles of an almost para-
complex structure Ks ∈ Aut(TM) which is compatible with ω0. The leaves of the canonical foliation F of
the cotangent bundleM = T*Q are the �bres Fq = π−1(q) over q ∈ Q, which are di�eomorphic to Rd. There is
a vector bundle isomorphism Ker(π*) ' TF, and the quotient by the action of the foliation is M/F ' Q.

If the baseQ is a Riemannianmanifoldwithmetric g, then thehorizontal lift of g, that is, the pullback g+ =
π*g, gives a �brewise Euclidean metric on Im(s). This de�nes a Born geometry with compatible generalized
metricH0 on (M, Ks , ω0) given by (4.11). Since any manifold Q admits a Riemannian metric, one can always
de�ne a Born geometry on M of this type. Similarly, given any 2-form b ∈ Ω2(Q), its horizontal lift b+ = π*b
de�nes a B+-transformation of the almost para-Kähler manifold (M, Ks , ω0).

4.5 The Canonical Metric Algebroid

On any almost para-Hermitian manifold (M, K, η), one can de�ne the canonical D-bracket which makes the
tangent bundle TM into a metric algebroid over M on which both eigenbundles L± of K are D-structures [3,
21, 74, 75]. For this, we �rst need the following preliminary notion.
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De�nition 4.19. Let (M, K, η) be an almost para-Hermitian manifold. Let∇LC be the Levi-Civita connection
of η, and let P± : TM → TM be the compositions of the inclusion maps L± ↪→ TM with the projections
TM → L± to the ± 1-eigenbundles of K. The canonical connection on (M, K, η) is

∇can = P+ ◦ ∇LC ◦ P+ + P− ◦ ∇LC ◦ P− .

The canonical connection is a para-Hermitian connection:∇canK = ∇canη = 0; in particular, it preserves the
eigenbundles L± of K. It coincides with the Levi-Civita connection, ∇can = ∇LC, if and only if (M, K, η) is
an almost para-Kähler manifold [21]. By a construction similar to Example 3.11, we then arrive at one of our
central concepts.

De�nition 4.20. Let (M, K, η) be an almost para-Hermitian manifold, and let∇can be its canonical connec-
tion. The canonical D-bracket J · , · KKD is de�ned by

η
(
JX, YKKD , Z

)
= η(∇can

X Y −∇can
Y X, Z) + η(∇can

Z X, Y) ,

for vector �elds X, Y , Z ∈ Γ(TM). Themetric algebroid (TM, J · , · KKD , η, 1TM) is the canonical metric algebroid
over (M, K, η).

The canonical D-bracket is compatible with the almost para-complex structure K, that is, both of its eigen-
bundles L± are D-structures on the metric algebroid (TM, J · , · KKD , η, 1TM):

JΓ(L±), Γ(L±)KKD ⊆ Γ(L±) .

It is ‘canonical’ because it is the projection of the Lie bracket of vector �elds [74]:

JP±(X), P±(Y)KKD = P±
(

[P±(X), P±(Y)]TM
)
,

for all X, Y ∈ Γ(TM). Given (M, K, η), the bracket J · , · KKD is the unique D-bracket on (TM, η, 1TM) which is
compatible with K and related to the Lie bracket [ · , · ]TM in this way [3]. In the canonical metric algebroid,
the generalized exterior derivative is given byDcan = η−1] ◦ d.

Remark 4.21. Any D-bracket on (TM, K, η) can be obtained by choosing a para-complex connection corre-
sponding to a splitting of the short exact Atiyah sequence from Proposition 3.47:

0 −→ so(TM) −→ At(TM, η) −→ TM −→ 0 , (4.22)

where At(TM, η) ⊂ J1(TM) is a vector subbundle of the �rst order jet bundle of the tangent bundle TM. In
other words, the canonical connection on (M, K, η) is just a change of splitting of the short exact sequence
(4.22) when the splitting associated with the Levi-Civita connection ∇LC is chosen, leading to the canonical
D-bracket. Any other change of splitting which yields a para-complex connection induces a D-bracket on
TM. By using the metric η to identify so(TM) '∧2TM, the di�erent splittings of (4.22) correspond to bundle
morphisms in Hom(∧2TM, TM), and hence the di�erent D-brackets can be shown to correspond to 3-forms
T ∈ Ω3(M), similarly to [16, Proposition 2.3].

Remark 4.23. Similarly to the D-bracket of a split exact pre-Courant algebroid (cf. Examples 3.9 and 4.15),
the canonical D-bracket can be twisted by any closed 3-form H ∈ Ω3(M). In particular, a B+-transformation
maps the canonical D-bracket J · , · KKD of (M, K, η) to the canonical D-bracket of (M, KB+ , η), which is equal
to J · , · KKD twisted by the 3-form db [3, 21]:

η
(
JX, YKKB+

D , Z
)

= η
(
JX, YKKD , Z

)
− db(X, Y , Z) ,

for all X, Y , Z ∈ Γ(TM).
Under the correspondence of Theorem 3.53, the canonical metric algebroid on (M, K, η) can be identi�ed

with a symplectic 2-algebroid (T[1]M ⊕ T*[2]M, { · , · }, γ), where the Poisson bracket { · , · } coincides with
the metric η on degree 1 functions Γ(TM). In this language a B+-transformation is a particular example of a
canonical transformation of the symplectic 2-algebroid, which twists the Hamiltonian γ (see e.g. [31, 79]).
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Remark 4.24. The canonical D-bracket also gives a notion of relative weak integrability of almost para-
Hermitian structures [21]. If (K, η) and (K′, η) are almost para-Hermitian structures on the same even-
dimensional manifold M, with respective eigenbundles L± and L′±, then K′ is said to be D-integrable with
respect to K if JΓ(L′±), Γ(L′±)]KD ⊆ Γ(L′±). The lack of D-integrability is then measured by the �uxes

T(X, Y , Z) := η
(
JX, YKKD − JX, YKK

′
D , Z

)
,

for X, Y , Z ∈ Γ(TM). The 3-forms T ∈ Ω3(M) reproduce the standard generalized �uxes of double �eld the-
ory [22].

5 The Metric Algebroids of Doubled Geometry
In this section we will make precise some notions of doubled geometry, and in particular its algebroid struc-
tures, which are relevant to a global description of double �eld theory.

5.1 Metric Algebroids from the Large Courant Algebroid

Let (M, K, η) be an almost para-Hermitian manifold of dimension 2d. We have seen that there are two nat-
ural metric algebroids that can be de�ned over M in this case. Firstly, there is the canonical metric al-
gebroid (TM, J · , · KKD , η, 1TM) de�ned on the tangent bundle TM of rank 2d in De�nition 4.20. Secondly,
there is the standard Courant algebroid (TM, [ · , · ]D, 〈 · , · 〉TM , ρ) de�ned on the generalized tangent bundle
TM = TM⊕T*M of rank 4d in Example 2.27; we call this lattermetric algebroid the large Courant algebroid on
M to distinguish it from other smaller rank Courant algebroids that will appear on M momentarily. Both the
canonical D-bracket on TM and the Dorfman bracket on TM can be twisted by a closed 3-form H ∈ Ω3(M),
and both classes of metric algebroids are classi�ed by B+-transformations which shift the twisting 3-form to
H + db for 2-forms b ∈ Ω2(M) (cf. Remark 4.23 and Example 4.15). We shall now discuss the precise relation
between these two metric algebroids, following [17, 29].

For this, let us start from a more general setting. Let (M, η) be any pseudo-Riemannian manifold. On the
para-Hermitian vector bundle TM → M (cf. Example 4.4) we can de�ne a generalized split signature metric
by the involution

I0 =
(

0 η−1]

η[ 0

)
with respect to the splitting TM = TM ⊕ T*M, and its B+-transformations IB+ given by IB+ = eB+ ◦ I0 ◦ e−B+ .
This de�nes another para-complex structure on TM which splits the generalized tangent bundle into its ± 1-
eigenbundles C± of equal rank:

TM = C+ ⊕ C− with C± = Graph(b ± η) ,

where Graph(b ± η) = {X + b[(X) ± η[(X) | X ∈ Γ(TM)} ⊂ TM. We denote by

p± : TM −→ C±

the projections to the subbundles C± of TM, and by i± : C± ↪→ TM the inclusion maps.
By this process of doubling, splitting and projecting via the generalized tangent bundleTM, we get a pair

of metric algebroids on any pseudo-Riemannian manifold.

Proposition 5.1. Let (TM, [ · , · ]D, 〈 · , · 〉TM , ρ) be the H-twisted standard Courant algebroid over a pseudo-
Riemannian manifold (M, η), and let C± ⊂ TM be the eigenbundles associated to the generalized metric IB+ .
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De�ne structure maps on sections of the vector bundles C± → M by

Jξ±, ξ ′±K±D := p±
(

[i±(ξ±), i±(ξ ′±)]D
)
,

〈ξ±, ξ ′±〉C± := ± 1
2 〈i±(ξ±), i±(ξ

′
±)〉TM ,

ρ± := ρ ◦ i± ,

for ξ±, ξ ′± ∈ Γ(C±). Then (C±, J · , · K±D, 〈 · , · 〉C± , ρ±) are metric algebroids over M.

The construction of Example 3.11 then yields

Proposition 5.2. Let (M, η) be a pseudo-Riemannian manifold. Then the metric algebroids
(C±, J · , · K±D, 〈 · , · 〉C± , ρ±) of Proposition 5.1 are isomorphic to the metric algebroid (TM, J · , · KηD , η, 1TM)
with D-bracket twisted by the 3-forms ± (H + db).

Proof. The anchormaps ρ± : C± → TM de�ned in Proposition 5.1 are bundle isomorphisms: the inversemaps
ρ−1
± : TM → C± send X ∈ Γ(TM) to X + (b[ ± η[)X. One then checks explicitly

η(X, Y) =
〈
ρ−1
± (X), ρ−1

± (Y)
〉
C±

along with 〈
Jρ−1
± (X), ρ−1

± (Y)K±D, ρ−1
± (Z)

〉
C±

= η
(
JX, YKηD , Z

)
± 1

2 (H + db)(X, Y , Z) ,

for all X, Y , Z ∈ Γ(TM), and that the anchor maps of the two metric algebroids are compatible, which is
satis�ed trivially as ρ± ◦ ρ−1

± = 1TM.

Let us �nally specialize Proposition 5.2, with b = 0 and H = 0, to the case that themetric η is part of an almost
para-Kähler structure (K, η). We then immediately arrive at

Proposition 5.3. Let (TM, [ · , · ]D, 〈 · , · 〉TM , ρ) be the large Courant algebroid over an almost para-Kähler
manifold (M, K, η). Then the anchor map ρ+ : C+ → TM de�nes a metric algebroid isomorphism from the
metric algebroid (C+, J · , · K+

D , 〈 · , · 〉C+ , ρ+) with b = 0 to the canonicalmetric algebroid
(
TM, J · , · KK′D , η, 1TM

)
corresponding to the para-complex structure K′ = ρ+ ◦ (K − Kt) ◦ ρ−1

+ .

Remark 5.4. The construction of Proposition 5.3 was originally given for �at para-Kähler manifolds in [17]
(see also [80]), using the localmodel of the cotangent bundleM = T*Qwith the canonical symplectic structure
ω0 (cf. Example 4.18), and in this way recovering thewell known local expression for the canonical D-bracket
J · , · K+

D with b = 0 and H = 0. It was extended to any generalized para-Kähler manifold in [29] (see also [3]),
using Proposition 5.2 with b ≠ 0 and H ≠ 0, where the D-brackets J · , · K±D coincide with the canonical D-
brackets of the two para-Hermitian structures K± associated to the generalized para-Kähler structure; the
relative �ux for this pair (cf. Remark 4.24) is precisely the twisting 3-form of the underlying large Courant
algebroid: T = H + db.

5.2 Doubled Manifolds and DFT Algebroids

The constructions of Section 5.1 motivate a generalization to a special class of metric algebroids where the
deviation from a Courant algebroid is done in a controlled way. As we discuss below, this is the essence of the
‘section constraint’ in double �eld theory (DFT for short). For this, we consider a special class of manifolds
on which the geometry of double �eld theory, or doubled geometry, is based. We denote by O(d, d) the split
orthogonal group, whose maximal compact subgroup is O(d) × O(d).

De�nition 5.5. Adoubledmanifold is amanifoldM of evendimension2d endowedwith anO(d, d)-structure,
or equivalently a pseudo-Riemannian metric η of split signature (d, d).
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Example 5.6. Any almost para-Hermitian manifold (M, K, η) is a doubled manifold, with a reduction of the
O(d, d)-structure to an O(d)×O(d)-structure. The introduction of a compatible generalized metricH0 further
reduces this to an O(d)-structure.

De�nition 5.7. A DFT algebroid over a doubled manifold (M, η) is a metric algebroid (C, J · , · KD, 〈 · , · 〉C , ρ)
whose anchor map de�nes an isometric isomorphism ρ : (C, 〈 · , · 〉C)→ (TM, η) of pseudo-Euclidean vector
bundles over M such that ρ ◦ ρ* = η−1].

Sections of the vector bundle C → M are called doubled vectors orDFT vectors. All constructions of Section 5.1
(in the split signature case) clearly �t into this general de�nition. On the other hand, Courant algebroids and
pre-Courant algebroids over doubledmanifolds are not DFT algebroids, because their anchormaps have non-
trivial kernels (cf. Remark 2.25). The following are noteworthy particular cases of DFT algebroids that will
appear later on.

Example 5.8. The metric algebroid (C+, J · , · K+
D , 〈 · , · 〉C+ , ρ+) over any almost para-Kähler manifold

(M, K, η), constructed in Proposition 5.3, is a DFT algebroid.

Example 5.9. The canonical metric algebroid
(
TM, J · , · KKD , η, 1TM

)
over any almost para-Hermitian mani-

fold (M, K, η), constructed in Section 4.5, is a DFT algebroid.

From De�nition 5.7 we can describe how the key Courant algebroid properties (2.4), (2.5) and (2.26) are ex-
plicitly violated in a DFT algebroid in terms of the underlying geometry of the doubled manifold. Recalling
Remark 3.58, we can write the map (3.59) in terms of (3.60) as

LeibD(c1, c2, c3)

= ρ−1([ρ(c1), homρ(c2, c3)]TM − [homρ(c1, c2), ρ(c3)]TM − [ρ(c2), homρ(c1, c3)]TM
+ homρ(c1, Jc2, c3KD) − homρ(Jc1, c2KD, c3) − homρ(c2, Jc1, c3KD)

)
,

for all c1, c2, c3 ∈ Γ(C), which follows from applying the anchor map to (3.59) and using the Jacobi identity
for the Lie bracket [ · , · ]TM on Γ(TM). This shows that the failure of the anchor map from being a bracket
homomorphism completely controls the violation of the Leibniz identity (2.4) in a DFT algebroid.

Lemma 5.10. Let (C, J · , · KD, 〈 · , · 〉C , ρ) be a DFT algebroid over a doubled manifold (M, η). Then

〈Df ,Dg〉C = η−1(df , dg) ,

homρ(c1, c2) · f + homρ(c2, c1) · f = η−1(df , d〈c1, c2〉C
)
,〈

LeibD(c1, c2, c3) + LeibD(c2, c1, c3), c4
〉
C = −η

(
homρ

(
ρ−1 ◦ η−1](d〈c1, c2〉C), c3

)
, ρ(c4)

)
− η
([
η−1](d〈c1, c2〉C), ρ(c3)

]
TM , ρ(c4)

)
,

for all f , g ∈ C∞(M) and c1, c2, c3, c4 ∈ Γ(C).

Proof. The �rst equality follows immediately from De�nition 5.7, which implies that the generalized exterior
derivative in a DFT algebroid is given by

D = ρ−1 ◦ η−1] ◦ d , (5.11)

and using the isometry property

η
(
ρ(c1), ρ(c2)

)
= 〈c1, c2〉C . (5.12)

For the second equality, we note that, as in any metric algebroid, the properties (3.2) and (3.6) imply

homρ(c1, c2) · f = 〈JDf , c1KD, c2〉C .



Algebroids, AKSZ Constructions and Doubled Geometry | 389

The symmetric part of homρ(c1, c2) may then be written as(
homρ(c1, c2) + homρ(c2, c1)

)
· f = (ρ ◦Df ) · 〈c1, c2〉C = η−1](df ) · 〈c1, c2〉C ,

where in the �rst step we used (3.2) again and the second step follows from (5.11).
For the third equality, we use (3.6) and (5.11) to write

LeibD(c1, c2, c3) + LeibD(c2, c1, c3) = −JD〈c1, c2〉C , c3KD = −Jρ−1 ◦ η−1](d〈c1, c2〉C), c3KD ,

and the result then follows from the de�nition (3.60) and the isometry property (5.12).

Remark 5.13. The notion of DFT algebroid was introduced in [17], for the special case of a �at para-Kähler
manifold in a local formulation based on a cotangent bundle M = T*Q, and with the skew-symmetrization
of the D-bracket (see also [80]). In that case, one can write local expressions for the Jacobiator and the map
homρ entirely in terms of the tangent bundle metric η and the Schouten-Nijenhuis bracket of multivector
�elds onM (see also [81]). In the double �eld theory literature, restricting to functions onM and sections of C
(equivalently vector �elds onM) forwhich the right-hand sides of the identities in Lemma 5.10 vanish is called
imposing the ‘(strong) section constraint’; in other words, the section constraint is requirement 〈Df ,Dg〉C =
η−1(df , dg) = 0 for all functions f , g ∈ C∞(M). Then via a suitable reduction or quotient, a DFT algebroid
becomes a Courant algebroid on M. Notice, however, that the well-known reduction procedure for Courant
algebroids given in [82] cannot be directly extended to metric algebroids, because it relies crucially on the
closure of the Leibniz identity for the algebroid bracket. Hence the precise geometric interpretation of the
section constraint remains an important open problem.We shall discuss this point further in Section 6within
the setting of a DFT algebroid over a foliated almost para-Hermitian manifold (M, K, η), where we shall see
that it is possible to make such a reduction in a suitable sense. This will clarify the sense in which a DFT
algebroid lies “inbetween” twoCourant algebroids, andhowdoubledgeometry is reconciledwith generalized
geometry.

However, even in this case one needs to exercise caution with these vanishing statements, because in
a metric algebroid the maps LeibD and homρ do not de�ne tensors (cf. Remark 3.58). Whereas in a Courant
algebroid the condition LeibD(e1, e2, e3) = 0 would yield the Bianchi identities for �uxes in supergravity, as
discussed in Section 2.5, in a general metric algebroid this condition depends on the choice of a local frame.
Instead, it is proposed by [72] to replace this condition in a DFT algebroid with the tensorial ‘pre-Bianchi
identity’ 〈

LeibD(c1, c2, c3), c4
〉
C = η

(
homρ(c1, c3), homρ(c2, c4)

)
− η
(
homρ(c1, c2), homρ(c3, c4)

)
− η
(
homρ(c1, c4), homρ(c2, c3)

)
,

for all c1, c2, c3, c4 ∈ Γ(C). This de�nes a special class of DFT algebroids, including the standard ones of
local double �eld theory that we will discuss in Section 6.1.

5.3 C-Brackets and Curved L∞-Algebras

Let (C, J · , · KD, 〈 · , · 〉C , ρ) be aDFT algebroid over a doubledmanifold (M, η). The analogue of the generalized
Lie derivative from Section 2.6,

LD
c := Jc, · KD ,

for c ∈ Γ(C), is now only an in�nitesimal symmetry of the split signature pseudo-Euclidean vector bundle
(C, 〈 · , · 〉C) over M, which is the natural notion of symmetry for a DFT algebroid. By Proposition 3.47, these
symmetries are encoded by the Atiyah algebroid

0 −→ so(C) −−→ At(C, 〈 · , · 〉C) −→ TM −→ 0 , (5.14)
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which contains both in�nitesimal di�eomorphisms ofM and orientation-preserving changes of orthonormal
frame for C.

In this case, closure of the gauge algebra is obstructed by the violation of the Leibniz identity. For this,
we introduce the analogue of the Courant bracket from Section 2.6,

Jc1, c2KC := 1
2
(
Jc1, c2KD − Jc2, c1KD

)
,

which is called a C-bracket of sections c1, c2 ∈ Γ(C). By (3.6), it is related to the D-bracket in the same way
that the Courant bracket is related to the Dorfman bracket of a Courant algebroid:

Jc1, c2KD = Jc1, c2KC + 1
2 D〈c1, c2〉C .

One can now equivalently characterize the compatibility conditions on the D-bracket of a DFT algebroid (and
more generally anymetric algebroid) in terms of the C-bracket by a statement completely analogous to Propo-
sition 2.36 without the Jacobiator identity; the latter is related to the map LeibD introduced in Remark 3.58,
and so the violation of the Jacobi identity for the C-bracket is controlled not only by the generalized exterior
derivative of the Nijenhuis operator NijC : Γ(C) × Γ(C) × Γ(C) → C∞(M), but also by the section constraint
〈Df ,Dg〉C = η−1(df , dg) = 0. It is in this alternative formulation using the C-bracket that the notion of DFT
algebroid was originally introduced in [17].

One can then write the commutator bracket of generalized Lie derivatives as[
LD
c1 , LD

c2

]
◦(c) = LD

Jc1 ,c2KC
(c) + JacC(c1, c2, c) −DNijC(c1, c2, c) ,

for all c1, c2, c ∈ Γ(C). In other words, the gauge algebra of generalized Lie derivatives only closes on the
C-bracket upon imposition of the section constraint η−1(df , dg) = 0 (see Remark 5.13). As shown by [81], the
natural extension of Theorem 2.39 to DFT algebroids involves a curving `0 ≠ 0 of the underlying L∞-algebra (a
map of degree 2 from the ground ringR), in order to accomodate the non-vanishingmap ρ ◦D = η−1] ◦d ≠ 0.
This then completely characterizes the DFT algebroid, similarly to the case of Courant algebroids.

Theorem 5.15. Let (C, J · , · KD, 〈 · , · 〉C , ρ) be a DFT algebroid over a �at doubledmanifold (M, η). Then there
is a curved L∞-algebra on L = L−1 ⊕ L0 ⊕ L2 with

L−1 = C∞(M) , L0 = Γ(C) and L2 = SpanR(η−1) ,

whose non-zero brackets are given by

`0(1) = η−1 , `1(f ) = Df ,

`2(c1, c2) = Jc1, c2KC , `2(c1, f ) = 1
2 〈c1,Df 〉C ,

`3(c1, c2, c3) = −NijC(c1, c2, c3) ,

`3(η−1, f , g) = 1
2 〈Df ,Dg〉C , `3(η−1, c1, f ) = 1

2 Jc1,Df KC − 1
4 D〈c1,Df 〉C ,

`4(η−1, c1, c2, c3) = JacC(c1, c2, c3) −DNijC(c1, c2, c3) ,

`5(η−1, c1, c2, c3, c4) = 1
2 Alt4

〈
JacC(c1, c2, c3) −DNijC(c1, c2, c3), c4

〉
C ,

for all f , g ∈ C∞(M) and c1, c2, c3, c4 ∈ Γ(C), where Alt4 is the alternatization map of degree 4.

5.4 AKSZ Construction of Doubled Sigma-Models

Using Theorem 3.53, it is easy to characterize a DFT algebroid (C, J · , · KD, 〈 · , · 〉C , ρ) as a symplectic 2-
algebroid (C[1]⊕ T*[2]M, { · , · }, γ) over a doubled manifold (M, η). For example, from Lemma 5.10 and the
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derived bracket constructions of Section 3.4, it can be characterized by the relation

{{{γ, γ}, f}, g} + {{{γ, γ}, g}, f} = 2 {{γ, f}, {γ, g}}

= 2 〈γ1(df ), γ1(dg)〉C

= 2 η−1(df , dg) , (5.16)

for all f , g ∈ C∞(M), where we used the graded Jacobi identity for the Poisson bracket along with γ1(df ) =
{γ, f} = Df . Similarly, the other two identities of Lemma 5.10 can be written in terms of derived brackets
using Remark 3.58. However, as {γ, γ} ≠ 0, a DFT algebroid does not correspond to a dg-manifold, and so
we cannot apply AKSZ theory directly to write down a topological sigma-model whose BV formalism can be
used to quantize the DFT algebroid. Note that all ingredients of the BV formalism, including the antibracket,
are present except for the classical master equation.

In analogy to the AKSZ sigma-models of Section 2.5, a three-dimensional topological sigma-model was
associated to anyDFT algebroid in [17] by pulling back the �elds of the Courant sigma-model corresponding to
the large Courant algebroid, using the construction of Section 5.1. The graded symplectic geometry viewpoint
of this construction was originally presented in [30], and applied in [79] to AKSZ theory. The idea behind
the construction is simple and is based on the way in which we motivated the de�nition of a DFT algebroid:
Start with a Courant algebroid (E, [ · , · ]E , 〈 · , · 〉E , ρ) of rank 4d over the doubled manifold (M, η), introduce
a generalized split signature metric on E, and then restrict the structure maps to obtain metric algebroid
structures on the corresponding eigenbundles, as in Proposition 5.1. This can be rephrased in the language
of symplectic 2-algebroids using Theorems 2.28 and 3.53. We will illustrate this in the simplest setting of the
large Courant algebroid of Proposition 5.3 over a �at doubled manifold (M, η).

The symplectic Lie 2-algebroid corresponding to the large Courant algebroid over M is, according to Ex-
ample 2.27 andTheorem2.28, based on the degree 2manifoldM = T*[2]T[1]Mwith coordinates (xI , ζ I , χI , ξI)
of degrees (0, 1, 1, 2). The degree 2 symplectic 2-form (2.29) in this case is

ω = dξI ∧ dxI + dχI ∧ dζ I ,

while the degree 3 Hamiltonian (2.30) becomes

γ =
√

2 ξI ζ I ,

which we have rescaled for convenience.
Using the spit signaturemetric η on the degree 0 bodyM, we restrict the tangent space coordinates to the

diagonal using the coordinates

τI± = 1√
2
(
ζ I ± ηIJ χJ

)
,

where η−1 = 1
2 η

IJ ∂
∂xI �

∂
∂xJ . The submanifold of M de�ned by the zero locus τI− = 0 yields a symplectic

2-algebroid whose underlying degree 2 manifold is M+ := T[1]M ⊕ T*[2]M with coordinates (xI , τI+, ξI) of
degrees (0, 1, 2), and with the pullbacks of the symplectic structure ω and Hamiltonian γ toM+ given by

ω+ = dξI ∧ dxI + 1
2 ηIJ dτI+ ∧ dτJ+ and γ+ = ξI τI+ .

This Hamiltonian is not integrable, {γ+, γ+} = ξI ηIJ ξJ ≠ 0, so (M+, γ+) is not a dg-manifold.
Under the correspondence of Theorem 3.53, the symplectic 2-algebroid (M+, ω+, γ+) can be identi�ed

with the metric algebroid (TM, J · , · KηD , η, 1TM) of Example 3.11. By Proposition 5.3, this is isomorphic to the
DFT algebroid (C+, J · , · K+

D , 〈 · , · 〉C+ , ρ+) on (M, η) (for b = 0), with corresponding degree 2 manifold C+[1]⊕
T*[2]M. This construction can be generalized along the lines of [79] to arbitrary anchor maps ρ : TM → TM
and to arbitrary compatible twists of the Dorfman bracket on the generalized tangent bundle TM.

We choose the symplectic potential

ϑ+ = ξI dxI + 1
2 τ

I
+ ηIJ dτJ+ ,
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which is the pullback toM+ of the Liouville 1-form (2.31) for the case of the large Courant algebroid. We now
pull back the degree 0 maps X̂ : T[1]Σ3 →M, onwhich theAKSZ action functional (2.32) for the large Courant
sigma-model is de�ned, to the submanifold τI− = 0 to givemaps X̂+ : T[1]Σ3 →M+. Composing thesewith the
isomorphism M+ → C+[1] ⊕ T*[2]M, the pullback of (2.32) to this mapping subspace then yields the action
functional

S+(X, A+, F) =
∫
Σ3

(
〈F, dX〉 + 1

2 〈A+, dA+〉C+

− 〈F, (ρ+ ◦ X)A+〉 + 1
3! 〈A+, JA+, A+K+

D〉C+

)
, (5.17)

where X : Σ3 → M is a smoothmap from an oriented compact 3-manifold Σ3, while A+ ∈ Γ(T*Σ3⊗X*C+) and
F ∈ Γ(∧2T*Σ3⊗X*T*M), with the same conventions as in (2.32). This de�nes a canonical topological sigma-
model associated to the DFT algebroid (C+, J · , · K+

D , 〈 · , · 〉C+ , ρ+) on the doubled manifold (M, η), which we
call a doubled sigma-model. Although it is similar in form to the Courant sigma-model (2.32), it is crucially
di�erent in many respects; in particular, it does not satisfy the BV master equation, so it is not an AKSZ
sigma-model, nor can it be extended to de�ne a BV quantized sigma-model.

Remark 5.18. Clearly the action functional (5.17) can be written down for any DFT algebroid
(C, J · , · KD, 〈 · , · 〉C , ρ) over any doubled manifold (M, η), not just the special instance in which we
have derived it, though in the general case it cannot be derived from AKSZ theory. The reducible open
gauge symmetries of (5.17), which are encoded through the Atiyah algebroid (5.14), have been studied in
detail by [17, 83] by projecting the BRST symmetry of the large Courant sigma-model. It is found that gauge
invariance and closure of the gauge algebra imply the analogue of the section constraint together with the
axioms for a DFT algebroid. For a �at doubledmanifold (M, η), these give the Bianchi identities for the �uxes
T ∈ Ω3(M) de�ned by

T(X, Y , Z) = η(JX, YKD, Z)

for doubled vectors X, Y , Z ∈ Γ(TM), which agrees with the �ux formulation of double �eld theory [84].
In particular, the doubled sigma-model gives a uni�ed description of geometric and non-geometric �uxes,
whilst precluding as classical solutions several physically relevant string backgrounds which do not satisfy
the section constraint [17].

Remark 5.19. Gauge invariance of (5.17) can also be understood in the AKSZ formalism and the associated
(local) curved L∞-algebra from Theorem 5.15. By (5.16) a natural constraint on the symplectic 2-algebroid
(C[1]⊕T*[2]M, { · , · }, γ} corresponding to a DFT algebroid which imposes the section constraint is given by

{{{γ, γ}, f}, g} = 0 ,

for all degree 0 functions f , g ∈ C∞(M). This is a slight weakening of the de�ning condition of a symplec-
tic almost Lie 2-algebroid from De�nition 3.61, and it coincides with the coordinate-free formulation of the
section constraint of double �eld theory in graded geometry originally presented by [85] (see also [31]); an
alternative derived bracket formulation of a DFT algebroid is found in [72].

On imposing the section constraint, all brackets involving η−1 in Theorem 5.15 vanish and the curving
`0 may be dropped. The remaining brackets then govern the in�nitesimal gauge symmetries of the DFT alge-
broidwith the section constraint, and are formally the same as the �at L∞-algebra of a Courant algebroid from
Theorem 2.39, as formulated originally in the graded geometry framework by [30] as the gauge algebra under-
lying double �eld theory (see also [86]). This is in harmonywith the expectation that aDFT algebroid becomes
a Courant algebroid when the section constraint is imposed.Wewill discuss the section constraint further, as
well as explicit solutions of the section constraint, in Section 6 below from a classical geometric perspective.
The fact that a DFT algebroid can be characterized by a curved L∞-algebra suggests that it may be possible
to formulate it as a dg-manifold [81], though not necessarily one with a compatible symplectic structure; this
perspective may allow for an AKSZ-type formulation of the doubled sigma-model as an unconstrained gauge
theory which admits a larger set of classical solutions, as well as an extension of BV quantization.
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6 Algebroids and Double Field Theory
In this �nal section we apply the mathematical framework of this paper to a rigorous study of some kinemat-
ical issues in double �eld theory, including how it reduces to supergravity (in the NS–NS sector) and how
T-duality is realized as a manifest symmetry in the doubled geometry formalism.

6.1 Local Double Field Theory

The standard local treatment of double �eld theory in the string theory literature [13–15, 18, 19, 87] is recov-
ered in the case when (M, K, η) is a �at para-Kähler manifold, and the DFT algebroid is the corresponding
canonical metric algebroid (TM, J · , · KKD , η, 1TM) [16]. In this case, the doubled manifold is locally a product
of two d-dimensional subspaces M = Q × Q̃. We can then write local coordinates x = (xI), I = 1, . . . , 2d on M
which are adapted to the foliations in the splitting TM = L+ ⊕ L− into integrable distributions L+ = TQ and
L− = TQ̃, i.e. x = (xI) = (xi , x̃i), i = 1, . . . , d. With respect to this splitting, the split signature metric has the
matrix form

η = (ηIJ) =
(

0 1
1 0

)
,

and we write its inverse as η−1 = (ηIJ) (with the same matrix form). The Levi-Civita connection∇LC is trivial,
and the local expression for the canonical D-bracket on two vector �elds X = XI ∂

∂xI and Y = Y I ∂
∂xI is given

by

JX, YKKD =
(
XI ∂Y

J

∂xI
− Y I ∂X

J

∂xI
+ Y I ηIL

∂XL
∂xM

ηMJ
) ∂
∂xJ

.

The canonical C-bracket

JX, YKKC = 1
2
(
JX, YKKD − JY , XKKD

)
is thus the standard C-bracket of double �eld theory [87].

In this sense, standard double �eld theory is the �at space limit of Born geometry: in the local adapted
coordinates, the Born metric is given by

H0(g) =
(
g 0
0 g−1

)
,

for a Riemannian metric g. Then B+-transformations by 2-forms b give the standard generalized metric

H(g, b) =
(
g − b g−1 b b g−1

−g−1 b g−1

)
(6.1)

of double �eld theory [19]. The D-bracket determines the in�nitesimal gauge transformations of H via the
generalized Lie derivative.

The local form of the section constraint reads

η(Dcanf ,Dcang) = η−1(df , dg) = ∂f
∂xI

ηIJ ∂g
∂xJ

= 0 .

Solutions of this constraint select polarizations, which are the d-dimensional ‘physical’ null submanifolds of
the doubled manifold (M, η); these are also called duality frames. Double �eld theory then reduces to super-
gravity in di�erent duality frames, which are related to one another by T-duality transformations. For exam-
ple, in the ‘supergravity frame’ the section constraint is solved by choosing para-holomorphic functions

∂f
∂x̃i

= 0 ,

afterwhich the C-bracket reduces to the local formof the standard Courant bracket on the generalized tangent
bundle TQ. With this solution of the section constraint, the metric (6.1) becomes the standard generalized
metric of generalized geometry (cf. Example 4.8).
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6.2 Global Aspects of Double Field Theory

Para-Hermitian geometry arises as a framework for doubled geometry when one analyses the implications of
the section constraint

η−1(df , dg) = 0

from a global perspective. This can be solved by picking a maximally η-isotropic distribution L− ⊂ TM of
the doubledmanifold (M, η) which is integrable. Then the section constraint is solved by foliated tensors; on
functions this condition reads

LX f = ιXdf = 0

for f ∈ C∞(M) and X ∈ Γ(L−). With L− = TF, this polarization selects the physical spacetime as a quotient
Q = M/F by the action on the leaves of the induced foliationF; foliated tensors are then those �eldswhich are
compatible with the surjective submersion fromM to the leaf space Q. The fact that the physical spacetime is
a quotient, rather than a subspace, of the doubled manifold (M, η) has been appreciated many times before
in the double �eld theory literature, see e.g. [16, 88–90].

To put this into the context of the present paper, by a polarization of a doubled manifold (M, η) we shall
mean a choice of almost para-Hermitian structure (K, η) on M. A central mathematical problem in under-
standing how the kinematics of double �eld theory reduces to supergravity, under imposition of the section
constraint, is to understand how doubled geometry reduces to generalized geometry. In generalized geom-
etry [8, 9], a generalized vector is a section X + α of the generalized tangent bundle TQ = TQ ⊕ T*Q, with
X ∈ Γ(TQ) a vector �eld and α ∈ Ω1(Q) a 1-form on a manifold Q. In doubled geometry, a generalized vector
is simply a vector �eld X ∈ Γ(TM) on the doubled manifold (M, η).

For this, we assume that the eigenbundle L− of the almost para-Hermitian manifold is involutive, i.e. it
admits integralmanifolds givenby the leaves of a regular foliationF. Given theprojectionmap P− : TM → TM
of De�nition 4.19 and the split signature metric η, de�ne the P−-projected canonical D-bracket J · , · K− by the
formula

η(JX, YK−, Z) = η(∇can
P−(X)Y −∇can

P−(Y)X, Z) + η(∇can
P−(Z)X, Y) ,

where∇can is the canonical connection of the almost para-Hermitian manifold (M, K, η). Then this de�nes a
Courant algebroid structure on the tangent bundle TM by [21, Proposition 3.13] (see also [3, Theorem 5.1.3]).
In other words, this ‘projects’ the canonical metric algebroid (TM, J · , · KKD , η, 1TM) to the Courant algebroid
(TM, J · , · K−, η, P−) on the doubled manifold (M, η). By De�nition 5.7, this can be straightforwardly general-
ized to any DFT algebroid over a foliated almost para-Hermitian manifold (M, K, η) [17, Proposition 5.20].

Having established that a DFT algebroid can be projected to a Courant algebroid on (M, η) when the
section constraint is imposed, let us now examine what becomes of this Courant algebroid on an explicit
solution of the section constraints. We can construct the generalized tangent bundle TS = TS ⊕ T*S on any
leaf S of the foliation F. Then there is a morphism from TS to TM covering the inclusion S ↪→ M, which is
�brewise bijective and is induced at the level of sections by the split signature metric η through

p− : Γ(TS) −→ Γ(TM) , X + α 7−→ p−(X + α) = X + η−1](α) . (6.2)

By [21, Proposition 3.13], this de�nes a metric algebroid morphism from the standard Courant algebroid
(TS, [ · , · ]D, 〈 · , · 〉TS, ρ) on S (see Example 2.27) to the Courant algebroid (TM, J · , · K−, η, P−) on M, that is,

p− ◦ [ · , · ]D = J · , · K− ◦ (p− × p−) , 〈 · , · 〉TS = η ◦ (p− × p−) and ρ = P− ◦ p− .

Altogether, this relates the canonical metric algebroid (TM, J · , · KKD , η, 1TM) to the standard Courant alge-
broid on any leaf S of the foliation F. Again, this construction can be straightforwardly generalized to any
DFT algebroid over a foliated almost para-Hermitian manifold (M, K, η) [17, Proposition 5.27]. In this sense,
doubled geometry recovers generalized geometry.
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However, the relation to the generalized geometry of the physical spacetime, i.e. the standard Courant
algebroid on TQ, is not so transparent in this framework. Let Q = M/F be the leaf space of the foliation F of
M de�ned by L− = TF, and denote by q : M → Q the quotient map. Given the splitting TM = L+⊕ L− induced
by K, the vector bundle morphism dq : TM → TQ, covering q, is �brewise bijective if restricted to L+, i.e.
dq|L+ : L+ → TQ is a �brewise isomorphism. Hence the C∞(M)-module Γ(L+) is isomorphic to the C∞(Q)-
module Γ(TQ). The metric η induces a vector bundle isomorphism L− → L*+ de�ned by X 7→ η[(X), because
L± are maximally isotropic with respect to η. Making further statements in this direction is part of the general
open problem of reducing metric algebroids to Courant algebroids in a suitable sense (see Remark 5.13).

Remark 6.3. This solutionof the section constraint of double�eld theory canbe interpreted in termsof global
objects as follows. Any involutive distribution L− = TF is naturally a Lie algebroid overM with the restriction
of the Lie bracket of vector �elds [ · , · ]L− = [ · , · ]TM

∣∣
Γ(L−)×Γ(L−) and the inclusion of the subbundle `− : L− ↪→

TM as anchor map; this de�nes a Lie subalgebroid of the tangent Lie algebroid (TM, [ · , · ]TM , 1TM). The Lie
algebroid (L−, [ · , · ]L− , `−) is naturally integrated by the holonomy groupoid Hol(F) ⇒ M of the foliation,
which provides a presentation of the leaf space as the quotient Q = M/F [91]. When Q is a manifold, this is
a Lie subgroupoid of the pair groupoid M × M ⇒ M which integrates the tangent Lie algebroid on M. In this
sense, the holonomy groupoid can be viewed as a smooth replacement for the leaf space.

Remark 6.4. There are several global treatments of doubled geometry available in the literature which o�er
complementary interpretations of the section constraint of double �eld theory. Here we mention a few that
are related to the perspectives o�ered in the present paper:

• On any para-Hermitian manifold (M, K, η), the eigenbundles L± of K naturally de�ne a pair of Lie alge-
broids on M by Remark 6.3. Then the section constraint can be interpreted as a compatibility condition
on a pair of D-structures (L+, L−) in the canonical metric algebroid (TM, J · , · KKD , η, 1TM), which implies
that the tangent bundle TM becomes a Courant algebroid onM [23]. In other words, the canonical metric
algebroid is composed of a double of Lie algebroids, analogous to the Drinfel’d double of a pair of Lie
algebras (see also [77]).

• A global formulation of doubled geometry based on higher geometry appears in [92] within the frame-
work of double �eld theory on the total (simplicial) space of a bundle gerbe, regarded as a U(1)-principal
2-bundle (see also the contribution [93] to this special issue). In this setting the section constraint is inter-
preted as invariance under the principal BU(1)-action, and para-Hermitian manifolds appear as an atlas
for the bundle gerbe. This framework clari�es and makes precise previous patching constructions using
�nite gauge transformations in double �eld theory [89, 94–97].

• A rack is a global group-like object whose in�nitesimal counterpart is a Leibniz-Loday algebra. A global
object integrating ametric algebroid, called apre-rackoid, hasbeen suggestedby [98]. This is aweakening
of the notion of a rackoid, which is a groupoid-like generalization of a rack, andwhich is the global struc-
ture corresponding to a Leibniz-Loday algebroid that can be used to integrate Courant algebroids. Explicit
realizations of pre-rackoids are given in [98] for the canonical metric algebroid over any para-Hermitian
manifold, which reduce to a rackoid when the section constraint of double �eld theory is imposed; these
pre-rackoids can also be implemented in the corresponding topological doubled sigma-model of Sec-
tion 5.4. These structures are relevant to the understanding of �nite gauge transformations in double
�eld theory [89, 94–97].

• On any foliated �at almost para-Hermitian manifold (M, K, η), solutions of the section constraint can be
understood [81] as an L∞-morphism from the curved L∞-algebra of the canonical metric algebroid over
(M, K, η), given by Theorem 5.15, to the �at L∞-algebra of the standard Courant algebroid over the leaf
space Q of the foliation, given by Theorem 2.39.
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6.3 Recovering the Physical Background Fields

A central problem in understanding the global formulation of the dynamics of double �eld theory is to inves-
tigate the quotient Q = M/F for a foliated almost para-Hermitian manifold (M, K, η) endowed with a gener-
alized metricH. We will do this by �rst recalling a more general result due to Kotov and Strobl [99, 100].

Let (M,H) be any Riemannian manifold. Let (A, [ · , · ]A , a) be a Lie algebroid over M endowed with a
linear connection∇, and de�ne the representation of A on TM by the �at A-connection

τ∇ : Γ(A) × Γ(TM) −→ Γ(TM)

given by
τ∇aX := [a(a), X]TM + a(∇Xa) ,

for all a ∈ Γ(A) and X ∈ Γ(TM).

De�nition 6.5. The triple (A,∇,H) is a Killing Lie algebroid if

τ∇H = 0 . (6.6)

The Killing vector �elds forH are given by X = a(a) for any covariantly constant section a ∈ Γ(A). Killing Lie
algebroids are related to quotients by

Proposition 6.7. Let (A, [ · , · ]A , a) be a Lie algebroid over a Riemannian manifold (M,H), endowed with a
linear conection∇, whose anchor map a is injective and has constant rank, so that its image Im(a) de�nes a
regular foliation F ofM. Then (A,∇,H) is a Killing Lie algebroid if and only if there is a Riemannian submer-
sion

q : (M,H) −→ (Q, g)

where Q = M/F is the leaf space of the foliation F and g is a Riemannian metric on Q.

This result allows us to understand under which circumstances the quotient implementing the section con-
straint exists. For further details and proofs see [76, 99, 100].

Remark 6.8. Proposition 6.7 can be interpreted globally from a Lie groupoid perspective [101]. The existence
of a Riemannian submersion q : (M,H)→ (Q, g) is equivalent to the statement that the submersion groupoid
M×QM ⇒ Q is endowedwith a 0-metric, i.e. ametric which is invariant under the canonical action ofM×QM
on its base manifold Q.

Conversely, for a submersion q : M → Q to be Riemannian it su�ces to check for the existence of a 1-
metric onM ×Q M ⇒ Q, i.e. a metric on the manifold of arrows which is transverse with respect to the source
map and for which the inversionmap is an isometry, because it induces a 0-metric. It is further shown in [101]
that any 0-metric on M ×Q M ⇒ Q can always be extended to a 1-metric.

In order to understand the condition (6.6) let us discuss further the case of a regularly foliated base Rieman-
nian manifold. Choose an orthogonal splitting s⊥ of the canonical short exact sequence

0 −→ TF −−→ TM −−→ ν(F) −→ 0 (6.9)

where ν(F) is the normal bundle of the foliation. Then TM ' Im(s⊥)⊕ TF, and with respect to this splitting
the Riemannian metric takes the form

H =
(
g⊥ 0
0 g||

)
, (6.10)

where g⊥ is a �brewise metric on Im(s⊥) and g|| is a �brewise metric on TF. Therefore the condition (6.6) is
equivalent to [99, 100]

LX||g⊥ = 0 , (6.11)
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for all X|| ∈ Γ(TF), which states a further equivalence with the requirement thatH is a bundle-like metric on
M, see [76]. Then (6.11) makes (M,F, g⊥) into a Riemannian foliation. Clearly, when a Riemannian submer-
sion q : (M,H)→ (Q, g) exists, then g⊥ = q*g.

Remark 6.12. ARiemannian foliation (M,F, g⊥) induces a 0-metric on the holonomy groupoidHol(F) ⇒ M.
Again, any 0-metric on Hol(F) ⇒ M can be extended to a 1-metric [101]. Conversely, as in Remark 6.8, the
existence of a 1-metric on Hol(F) ⇒ M implies the existence of a Riemannian foliation on (M,F).

For an almost para-Hermitianmanifold (M, K, η) endowedwith a generalizedmetricH, characterized by the
pair (g+, b+) according to Proposition 4.7, we assume the eigenbundle L− of K is integrable, that is, L− = TF,
where F is the induced foliation. We further assume that the leaf space Q = M/F is a manifold. Then the
splitting s⊥ of (6.9) corresponds to the para-Hermitian structure given by the B+-transformation of K induced
by the 2-form b+. ThusH takes the diagonal form (6.10) with g⊥ = g+, that is, (TM, KB+ , η,H) is a Born vector
bundle onM. In this case the Killing Lie algebroid structure on L− = TF is characterized by the corresponding
Bott connection on TM, as discussed in [76], whereby the Riemannian metric on M is used to construct the
corresponding connection on TM.

On the other hand, any B+-transformation preserves the foliation L− = TF and induces a splitting of
TM such that the transformed generalized metric HB+ has only a di�erent g|| component. In other words,
B+-transformations preserve the Riemannian foliation (M,F, g+). Thus when the quotient map q : M → Q

is a Riemannian submersion, it remains the same for all the B+-transformed generalized metrics. Similarly,
any di�eomorphism ϕ ∈ Di�(M) preserving the Riemannian foliation (M,F, g+) such that ϕ*η = η induces a
new para-Hermitian structure with a transformed generalized metricHϕ, but which preserves the quotient;
in other words, (M,Hϕ) is still mapped into (Q, g) with g+ = q*g.

The B+-transformed subbundle eB+ (L+) is no longer isotropic with respect to the fundamental 2-form ω,
and one has

ω
(
eB+ (X+), eB+ (Y+)

)
= 2 b+(X+, Y+) ,

for all X+, Y+ ∈ Γ(L+). If the 2-form b+ is transversally invariant, i.e. LX−b+ = 0 for all X− ∈ Γ(L−), then the
leaf space admits a 2-form b ∈ Ω2(Q) such that b+ = q*b. In other words, the leaf space Q becomes a string
target space whose background �elds (in the NS–NS sector) are given by the pair (g, b).

Remark 6.13. Following the treatment of Section 6.2, a generalizedmetric on an almost para-Hermitianman-
ifold can also be related to a generalized metric on a generalized tangent bundle. One shows that the vector
bundle morphism (6.2) pulls back a generalized metric on a foliated almost para-Hermitian manifold, with
the foliation associated with the almost para-complex structure, to a generalized metric on the generalized
tangent bundle TS constructed on any leaf S of the foliation F.

Remark 6.14. If we relax the requirement that the leaf spaceQ = M/F is amanifold, then these constructions
can be used to provide natural geometric realizations of the ‘non-geometric backgrounds’ of string theory, see
e.g. [1, 102–105]. Following the standard terminology [1], if the foliation de�nes a singular quotient, then the
physical spacetime Q is called a T-fold; a typical class of examples are the orbifolds that arise from foliations
with compact leaves and �nite leaf holonomy group [91]. For a T-fold, the holonomy groupoid Hol(F) ⇒ M is
no longer a Lie subgroupoid of the pair groupoidM ×M ⇒ M. On the other hand, in the non-integrable case,
where there is no foliation of M at all and hence no solution of the section constraint, there is no physical
spacetime and M is an essentially doubled space in the terminology of [106]; see [76] for further discussion
and details, as well as many explicit examples.

6.4 Generalized T-Duality

Double �eld theory originated as an attempt to extend supergravity, which is described by generalized geom-
etry, into a theory which is manifestly symmetric under the fundamental T-duality symmetry of string theory,
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that exchanges distinct physical spacetimes and background �elds: in doubled geometry T-duality is realized
as suitable di�eomorphisms of a doubled manifold. Let us now discuss how this �ts into the treatment of the
present paper. For this, we introduce a notion of T-duality for almost para-Hermitianmanifolds endowedwith
a generalized metric, starting from the natural notion of symmetries of para-Hermitian vector bundles.

Proposition 6.15. Let ϑ ∈ Aut(E) be an automorphism of a para-Hermitian vector bundle (E, K, η) of rank
2d which is an isometry of the split signature metric η. Then the para-Hermitian structure (K, η) is mapped
by ϑ into another para-Hermitian structure (Kϑ , η), where Kϑ = ϑ−1 ◦ K ◦ ϑ.

Remark 6.16. The automorphisms of Proposition 6.15 form a subgroup of Aut(E) denoted by O(d, d)(E). Any
element ϑ ∈ O(d, d)(E) maps a generalized metric H on (E, K, η) into another generalized metric Hϑ on
(E, Kϑ , η).

In the applications to doubled geometry, we take E = TM, andwriteO(d, d)(M) forO(d, d)(E). In this case the
transformations of Proposition 6.15 have been identi�ed as generalized T-dualities in [76], which encompass
many known examples, including non-abelian T-duality transformations. They naturally induce changes of
polarization (K, η) for solutions of the section constraint on a doubled manifold (M, η). The doubled geome-
try viewpoint allows for an interpretation of the usual notion of T-duality by establishing a correspondence
between quotients of a doubled manifold with respect to di�erent foliations.

For this, let (M, η) be a foliated doubled manifold endowed with an almost para-Hermitian structure
(K, η) and a generalized metric H such that (M,F, g+) is a Riemannian foliation, where L− = TF is the inte-
grable −1-eigenbundle of K and (g+, b+) is the pair identifying H in the splitting of the tangent bundle TM
given by K. Then a T-duality transformation is given by an η-isometric di�eomorphism ϕ ofM that maps the
triple (K, η,H) into (Kϕ , η,Hϕ), and the foliationF into a di�erent foliationFϕ . We require that (M,Fϕ , g+ϕ)
be a Riemannian foliation, where (g+ϕ , b+ϕ) is the pair identifying the generalized metricHϕ in the splitting
given by Kϕ. This construction is depicted by the diagram

(M,F,H) (M,Fϕ ,Hϕ)

(Q, g+) (Qϕ , g+ϕ)

ϕ

q qϕ

T

where the dashed arrow (indicatively) de�nes the T-duality T from the leaf space Q = M/F to the leaf space
Qϕ = M/Fϕ via this diagram.

Here we do not demand that the leaf spaces be endowed with smooth structures. For instance, this con-
structionmakes sense when the leaf spaces admit an orbifold structure, see Remark 6.14. Thus it may happen
that a T-duality transformation takes a geometric background, with smooth leaf space Q, to a T-fold. It may
also happen that the eigenbundle L−ϕ of Kϕ is not integrable; this corresponds to a generalized T-duality
which sends a geometric background to an essentially doubled space. These are the ways in which the pro-
totypical non-geometric backgrounds of string theory arise (see e.g. [107, 108] for reviews).

Notice that di�eomorphisms ϕ which preserve the Riemannian foliation (M,F, g+) give trivial T-duality
transformations T . We can also extend this constuction beyond di�eomorphisms ofM to more general auto-
morphisms ϑ ∈ O(d, d)(M) of the tangent bundle TM. In particular, B+-tranformations preserve the foliation,
i.e. the eigenbundle L−, and so give trivial T-dualities as well.

Remark 6.17. There is a natural equivalence relation on foliated manifolds called ‘Haudor� Morita equiva-
lence’ that preserves regular foliations and induces Morita equivalent holonomy groupoids, see [109]. Apply-
ing this notion to the case at hand, two foliationsF andF′ ofM are Hausdor�Morita equivalent if there exists
a manifold P and two surjective submersions π, π′ : P → M with connected �bres such that π−1F = π′−1F′:
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P

(M,F) (M,F′)

π π′

Then the leaf spacesQ = M/F andQ′ = M/F′ are homeomorphic, and the transverse geometry at correspond-
ing leaves is the same.

The construction above is equivalent to saying that a T-duality transformation is given by two Haus-
dor� Morita equivalent Riemannian foliations where the equivalence classes are induced by restricting to
η-isometric di�eomorphisms. It might be argued that di�eomorphisms which preserve a Riemannian folia-
tion form a subclass of the class of Hausdor� Morita equivalent foliations. Thus a chain of T-duality transfor-
mations might be given by di�erent Hausdor� Morita equivalent subclasses of Riemannian foliations inside
a Hausdor� Morita equivalence class of foliations for the doubled manifold (M, η). Then di�erent Hausdor�
Morita equivalence classes correspond to di�erent T-duality chains.
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