DE GRUYTER Complex Manifolds 2021; 8:329-335

Research Article Open Access
Luis Fernandez, Tobias Shin, and Scott O. Wilson*

Almost complex manifolds with small
Nijenhuis tensor

https://doi.org/10.1515/coma-2020-0122
Received September 10, 2021; accepted October 2, 2021

Abstract: We give several explicit examples of compact manifolds with a 1-parameter family of almost com-
plex structures having arbitrarily small Nijenhuis tensor in the C°-norm. The 4-dimensional examples pos-
sess no complex structure, whereas the 6-dimensional example does not possess a left invariant complex
structure, and whether it possesses a complex structure appears to be unknown.
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1 Introduction

The purpose of the following short note is to give several explicit examples of compact manifolds with a 1-
parameter family of almost complex structures having arbitrarily small Nijenhuis tensor in the C°, or supre-
mum, norm. The 4-dimensional examples possess no complex structure, whereas the 6-dimensional example
does not possess a left invariant complex structure, and whether it possesses a complex structure appears to
be unknown.

The idea that such examples might exist was inspired by efforts of the second author to place the work of
Demailly and Gaussier [3] in the context of Gromov’s h-principle, whereby an integrable complex structure
was interpreted as a holonomic solution of a locally closed differential relation. The lack of homotopy ob-
structions to formal solutions of this differential relation led the second author to attempt various h-principle
techniques, to try to deform a “formal integrable complex structure” into a genuine one. This naturally led
to the question of whether every almost complex manifold has almost complex structures that are arbitrarily
close to an integrable one.

We remark that the examples below appear not to be isolated, as some exist in larger parameter families
than we’ve presented here. The technique used to construct these examples involves considerable trial-and-
error, aided by computer algebra software, and in some cases guided by the gradient descent method and the
assumption of rational functions. It remains an interesting practical problem to find a general technique.

Perhaps even more importantly, one wishes to have a more clear conceptual reason as to why this is pos-
sible, and it remains an open question whether almost complex structures with arbitrarily C°-small Nijenhuis
tensor always exist on compact almost complex manifolds. Some recent results in this direction, particular
to dimension 6, appear in the work of Fei et. al. [5], establishing sufficient conditions for some symplectic
manifolds.
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2 Nilmanifold examples

We begin with two nilmanifold examples, in real dimensions 4 and 6, respectively. In each case, the nilpotent
Lie algebra g has rational structure constants, so there exists a lattice I'" of the Lie group G that has compact
quotient I'\ G (see [10], Theorem 7). Then any linear complex structure on g descends to a left invariant al-
most complex structure on any such quotient I'\ G. Any two norms on the finite dimensional vector space g
are equivalent, and convergence of a tensor will be understood in the induced C°-topology, which is norm-
independent.

In general, the integral cohomology of I'\ G depends on the lattice I', but the real cohomology does not,
and can be computed from the cohomology of the Lie algebra, by Nomizu’s theorem [13]. The diffeomorphism
type of the quotient I'\ G is completely determined by the fundamental group, i.e. the lattice I'. In fact, this is
true for solvmanifolds as well, see [12].

2.1 Filiform Lie algebra in Dimension 4

Consider the real 4-dimensional nilpotent Lie algebra g, with basis {X;, X5, X3, X4}, and only non-zero brack-
ets determined by
[XlaXi]=Xi+1 for i=2,3,

or similarly, if {x1, x2, x3, x4} is the dual basis,
dx;=0 dx;=0 dX3 =-X1 AXy dx;=-X1 N X3.

A filiform 4-manifold M* is a compact quotient I'\ G, where I is a lattice of the simply connected Lie group
G of g. Using the definition of g above, it is easy to see that x; and x, generate H'(M*), and x; A x4 and x> A X3
generate H2(M*), so that the Betti numbers of M* are b; = b, = b3 = 2.

The manifold M* does not admit any integrable complex structure. Indeed, since b, is even, by Kodaira’s
classification of surfaces, M* would then be Kihler, and hence M* would be formal. But this manifold is not
formal, as it has a nontrivial Massey product, and moreover, every formal nilmanifold is diffeomorphic to
a torus [7], and thus has b = 4. Alternatively, one can argue that since b; = 2 and M* is parallelizable,
then by a result of Fernandez and Gray [4] (which also relies on the classification of surfaces) M* does not
have a complex structure. We note that this manifold does admit a symplectic form. One example is w =
X1 A\ Xy + X2 A\ X3.

We give an example of a 1-parameter family J; of left-invariant almost-complex structures on M* such
that the Nijenhuis tensor N; := N(J;) satisfies Ny — 0 as t — oo. In the ordered basis {X1, X>, X3, X4}, define

1 —2cscht 0 0
_ |sinht -1 0 0
Je=1"0 0 ~1-v2Z -2(2+v2)cscht
0 0 sinh t 1++2

where cscht = 1/ sinh t.
Since the Nijenhuis tensor

Ne(X, Y) := X, Je Y] - [X, Y] - Ju[X, Je Y] - JeUeX, Y]

is skew-symmetric, it is completely determined by
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Ne(X1,X2)=0
Ne(X1,X3) =-4(1 + v2)cscht X3

N¢(X1,X4) = —-4cscht (2(3 +2v2)cscht X5 - (1+V2) X4>
N¢(X5, X3) = -4cscht ((2 ++v/2)cscht X5 - (1+V2) X4)

Ni(X5, X,) = 4(2 + vV2) csch? t X,
Ni(X5,X4) = 0.

It is clear that every component approaches zero uniformly as t — oo, and therefore Ny — 0.
Thus we see any such filiform 4-manifold I'\G has an almost Kdhler structure, and has an arbitrarily
small Nijenhuis tensor for another J, but no complex structure.

2.2 Filiform Lie algebra in Dimension 6

Consider the filiform Lie algebra g of dimension 6, with basis {Xj, ..., X¢}, and only non-zero brackets de-
termined by
[X1;Xi]=Xi+1 for i=2,3,4,5.

A filiform 6-manifold M°® is a compact quotient I'\G where I"is a lattice in the simply connected Lie group G
associated to g.

According to [6], the Lie algebra g does not admit an integrable linear complex structure, and thus there is
no left invariant complex structure on any of the compact quotients M®. To our knowledge, there is no known
complex structure on these manifolds, nor any proof that none of these compact quotients admit a complex
structure (as this is a widely open problem for all almost complex 6-manifolds). Incidentally, such manifolds
do admit an almost Kdhler structure, e.g.

JX1=Xe, JX5=X5, JX3=-X4,

with
W =X1 NXg+ AX2X5 — X3 N\ Xy,

where {x1, ..., Xg} is the dual basis.

We give an example of a 1-parameter family J;, of left-invariant almost-complex structures on any M®,
such that the Nijenhuis tensor N; := N(J;) satisfies Ny — 0 as t — oo. In the ordered basis {X1, ..., X¢},
define

-1 -1 0 0 0 0
V3(t2+1) B
43 (t+t2+1 2_
( ' ) 0 0 0 0
3(t2+1) V3(2+1)
1 0 L 1 0 0
3 t
Je = , V3
__ 2t 1 _4t _1 0 0
V3(2+1) t 3 V3
0 5t 44241 8t2(2+1) o4 1 241
V38(262+1) 3v/3(22+1) 6t4+9t2+3 V3 [&
48 (t4++1) 2 _16P(2t'+2641) g 41
L 3v/3(2t4+3t2+1) 3 9(2+1)2(212+1)  /3(62+3)  3(+1) /3
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Then it is a long but straightforward algebraic computation to find the entries of the tensor N as given below:

6 74h , 42
B (t+7t+5t+1) 2(f+1)
Ni(X1,X2) = §X4+ V366 (20 + 1) X5_3t(2t2+1)X6
2t 4 8(th+t2+1)
N¢(X1, X = - X3 - X4 -
(X1, X3) 3+ 3(ev)t 3V3t (2 + 1)
1 2t
Ne(X1,Xs4) = —§X3+WX4
N(X1,X5) = ——2Xs-—2 X
t\A1, A5 \/§t 5 3(t2+1) 6
2
(P +1) 2
N(X1,X6) = e X5+EX6
! 2 4(t"+382 + 1) 8
N2, X5) = s ﬂt3X4+3t2(t2+1) e+1)"° 33600
1 2 4
Nl’(XZ’X4) = _FX4 + \/§t3X5 - 3 (th n 1)X6
o (+1) 2
Ne(Xa, X5) = 5 XS_ﬁﬁXG
?+1
Ne(X3, Xe) —( 6 )Xs
Nt(Xi,Xj) = 0 lfl,]E 3,

andso Ny — 0ast — oo.

3 Solvmanifold examples

We give two families of examples of solvmanifolds of real dimension 4 which have no complex structures yet
have a family of almost complex structures whose Nijenhuis tensors tend to zero. Since there is no general
criterion to ensure the existence of a co-compact lattice in a simply connected solvable Lie group, we will
specify one which is co-compact in each case. As before, since the complex structures on g that we provide
are linear, they descend to any compact quotient.

3.1 Afirst class of 4d-solvmanifold examples

The first solvmanifold is taken from Fernandez and Gray [4]. Consider the real 4-dimensional solvable Lie
algebra g, with basis X1, X», X3, X4, and only non-zero brackets

(X1, X3] = kX1
(X2, X3] = kX»,
for any k # 0. This Lie algebra is the direct sum of the trivial one dimensional Lie algebra (generated by X,)

with the Lie algebra g(k) of the simply connected solvable (non-nilpotent) Lie group G(k) given by matrices
of the form

o
m\
L
N

o~ oo

RN X
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For this case, we take x, y, z € R and k a real number such that ek +ek

k # 0).
Let M*(k) = (I'\G(k)) x S, where I is any lattice of G(k) determined, as in ([1], Theorem 4 (4)), by the
subgroup of G(k) generated by matrices of the form

is an integer different than 2 (so that

1 0 0 u 1 0 0 w» ek 0 0 o0
01 0 u 01 0 v 0 ek o0 o
o001 0| loo1o0|” |0 o0 1 n|’
0 00 1 0 00 1 0 0 0 1

where n € N, and (uq, u,) and (vq, v,) are linearly independent.

This Lie algebra is completely solvable, i.e. the adjoint action ady has real eigenvalues for all X. By a
theorem of Hattori [9], one can compute the de Rham cohomology of any associated completely solvmanifold
I'\G from the cohomology of the Lie algebra.

Using the brackets above, it is easy to see that x3 and x, generate H!(M*), and x; AX, and x3 Ax, generate
H?(M*), so that the Betti numbers of M* are by = b, = by = 2. Since b; = 2 and M*(k) is parallelizable,
then by a result of Fernandez and Gray [4], M*(k) does not have a complex structure. As also pointed out in
[4], these manifolds nevertheless are formal, symplectic, and moreover satisfy all the known cohomological
properties of a Kahler manifold.

Since the manifolds M“(k) all have the same minimal model as S xS'xS?, as shown in [4], this shows that
there is no algebraic condition on the minimal model of four manifolds implying the existence of a complex
structure. A. Milivojevic obtained a similar result in dimension 2n = 6 and greater using a geometric argu-
ment, namely, for every almost complex manifold, he constructs a non-almost-complex manifold by taking
its connected sum with a non-spin® simply connected rational homology sphere [11].

For any k # 0, consider the family of linear almost complex structures on g defined in the ordered basis
{Xl, e ,X4} by

-2 -1 _6+V/3BktP2kAtY 6-/3kt*+2k*t
k2 /3 3126 3K2 65
-1 9 -1 2t V3-2kt?
V3 3kt 3 3kt3
Je =
1 1 1,1 -1
t t V3 ke kt?
_ -1 -1, 1
t ¢ k V3 ke

Then the Nijenhuis tensor is determined by

Ny, Xy) = ‘72" (X1 + Xo) + 2%

Nt(Xl,X3)=% (\Z/I%Xg +X4> 1 (\f 1+7X2> 1X3+%X1

Ne(Xq, X,) = %Xl - tl5X3 + W X2 -X1)+ —3X4 + 3t2 (X1 +X3)

N, X3) = 22K - 5Ky ﬂz Gxi+ )+ ¢ ( \%"Xg -1

N¢(X5, X,) = %Xl + %SX3 \f 7 (BX1+Xy)+ X4 + t2 (X1 +X3)

Ni(X3, X4) = %)ﬁ - %)ﬁ + W (X2 -Xq1)+ @ <ﬁx3 + EX“)
+3i3( Xz)—% 3 %(X1+Xz).

Then, for each k # 0, N — O as t — oo, as claimed.
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3.2 A second class of 4d-solvmanifold examples

The next class of almost complex manifolds that admit no complex structure are taken from Hasegawa ([8],
Section 4, Example 2). Consider the Lie group R? x4 R, where ¢ : R — Aut(R?), and R and R® have the
standard additive structures. In order to ensure there is a lattice, we choose ¢(1) = A € SL(3, Z), and restrict
to the case that A has three real, positive, distinct eigenvalues. There are many such examples, e.g.

0O 0 1
A=1|1 0 -k
0O 1 8

for any integer k with 6 < k < 15, (c.f. Bock [2]). Then the action of A on Z> can be extended to ¢ : R — Aut(R?>)
by defining ¢; = exp(tlogA), and I' = Z> X Z is alattice in G = R3 x4 R. Since the eigenvalues of A are
distinct, we can write A = VDV~!, with D diagonal having entries e"l, e"z, e‘(Al”‘Z), and V is a matrix whose
columns are the respective eigenvectors. Let X; be the standard basis vector for R, and let { X5, X3, X, } be the
columns of V1.

The derivative of ¢ : R — Aut(R>) at zero is the map ¢ : R — End(R>) sending X; to left multiplication
by log A. So, in the standard basis {E;} of R x R?, with E; = X1, the Lie algebra of G has non-zero brackets
determined by

[E1, E;] = (log A) E;,

for i = 2,3, 4. Equivalently, the transport of the Lie bracket by V, defined by {, } := V™1 o [V(-), V(-)],
satisfies

{X1, X2} =X,
{X1, X3} = X3
{X1, X4} = (A1 + A)X4.

Note that the first Betti number of I'\ G is equal to one unless any of A1, A,, or (11 + A,) are zero.

According to Hasegawa’s classification of compact complex 4-dimensional solvmanifolds, any such solv-
manifold I'\ G does not have a complex structure ([8], Section 4, Example 2).

To give a 1-parameter family of almost complex structures J; on (g, [, ]) with Nj, — 0, it suffices to give
almost complex structures K¢ on (g, { , }) in the basis {X1, X», X3, X4}, with Nk, — 0, for then we may define
J¢ := V71K, V. To this end, in the ordered basis {X1,...,X4}, let

2(A1+24;)
1 1/t At 0
C2QAHAE 2044 2(2A4+4:)(A1+24,) A1+2A,
A-A; A-A; (A1-42)? (A -2)t
K, =
A1+2A -1
t 1/2 /111+—/122 5
0 t 2(2A1+A)t 0

-y
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Then the Nijenhuis tensor of K; is determined by

Ni(X1, X3) = @Xl

Ni(Xy, X3) = 2(2/\1(;?2_)%1): Z)lz)X1

(P () (28)
- () B (28]
Ne(X3,X4) = (2 (24, &ilz_)g{lzl);tf)lz)z) X; - (W) X3.

So, Nt - 0ast — oo.
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