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Abstract: We give several explicit examples of compact manifolds with a 1-parameter family of almost com-
plex structures having arbitrarily small Nijenhuis tensor in the C0-norm. The 4-dimensional examples pos-
sess no complex structure, whereas the 6-dimensional example does not possess a left invariant complex
structure, and whether it possesses a complex structure appears to be unknown.
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1 Introduction
The purpose of the following short note is to give several explicit examples of compact manifolds with a 1-
parameter family of almost complex structures having arbitrarily small Nijenhuis tensor in the C0, or supre-
mum,norm. The4-dimensional examples possess no complex structure,whereas the6-dimensional example
does not possess a left invariant complex structure, and whether it possesses a complex structure appears to
be unknown.

The idea that such examples might exist was inspired by e�orts of the second author to place the work of
Demailly and Gaussier [3] in the context of Gromov’s h-principle, whereby an integrable complex structure
was interpreted as a holonomic solution of a locally closed di�erential relation. The lack of homotopy ob-
structions to formal solutions of this di�erential relation led the second author to attempt various h-principle
techniques, to try to deform a “formal integrable complex structure” into a genuine one. This naturally led
to the question of whether every almost complex manifold has almost complex structures that are arbitrarily
close to an integrable one.

We remark that the examples below appear not to be isolated, as some exist in larger parameter families
than we’ve presented here. The technique used to construct these examples involves considerable trial-and-
error, aided by computer algebra software, and in some cases guided by the gradient descentmethod and the
assumption of rational functions. It remains an interesting practical problem to �nd a general technique.

Perhaps even more importantly, one wishes to have a more clear conceptual reason as to why this is pos-
sible, and it remains an open questionwhether almost complex structureswith arbitrarily C0-small Nijenhuis
tensor always exist on compact almost complex manifolds. Some recent results in this direction, particular
to dimension 6, appear in the work of Fei et. al. [5], establishing su�cient conditions for some symplectic
manifolds.
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2 Nilmanifold examples
Webeginwith two nilmanifold examples, in real dimensions 4 and 6, respectively. In each case, the nilpotent
Lie algebra g has rational structure constants, so there exists a lattice Γ of the Lie group G that has compact
quotient Γ\G (see [10], Theorem 7). Then any linear complex structure on g descends to a left invariant al-
most complex structure on any such quotient Γ\G. Any two norms on the �nite dimensional vector space g

are equivalent, and convergence of a tensor will be understood in the induced C0-topology, which is norm-
independent.

In general, the integral cohomology of Γ\G depends on the lattice Γ, but the real cohomology does not,
and can be computed from the cohomology of the Lie algebra, by Nomizu’s theorem [13]. The di�eomorphism
type of the quotient Γ\G is completely determined by the fundamental group, i.e. the lattice Γ. In fact, this is
true for solvmanifolds as well, see [12].

2.1 Filiform Lie algebra in Dimension 4

Consider the real 4-dimensional nilpotent Lie algebra g, with basis {X1, X2, X3, X4}, and only non-zero brack-
ets determined by

[X1, Xi] = Xi+1 for i = 2, 3,

or similarly, if {x1, x2, x3, x4} is the dual basis,

dx1 = 0 dx2 = 0 dx3 = −x1 ∧ x2 dx4 = −x1 ∧ x3.

A �liform 4-manifold M4 is a compact quotient Γ\G, where Γ is a lattice of the simply connected Lie group
G of g. Using the de�nition of g above, it is easy to see that x1 and x2 generate H1(M4), and x1∧x4 and x2∧x3
generate H2(M4), so that the Betti numbers of M4 are b1 = b2 = b3 = 2.

ThemanifoldM4 does not admit any integrable complex structure. Indeed, since b1 is even, by Kodaira’s
classi�cation of surfaces, M4 would then be Kähler, and hence M4 would be formal. But this manifold is not
formal, as it has a nontrivial Massey product, and moreover, every formal nilmanifold is di�eomorphic to
a torus [7], and thus has b1 = 4. Alternatively, one can argue that since b1 = 2 and M4 is parallelizable,
then by a result of Fernández and Gray [4] (which also relies on the classi�cation of surfaces) M4 does not
have a complex structure. We note that this manifold does admit a symplectic form. One example is ω =
x1 ∧ x4 + x2 ∧ x3.

We give an example of a 1-parameter family Jt of left-invariant almost-complex structures on M4 such
that the Nijenhuis tensor Nt := N(Jt) satis�es Nt → 0 as t →∞. In the ordered basis {X1, X2, X3, X4}, de�ne

Jt =


1 −2 csch t 0 0

sinh t −1 0 0
0 0 −1 −

√
2 −2(2 +

√
2) csch t

0 0 sinh t 1 +
√
2

 ,
where csch t = 1/ sinh t.

Since the Nijenhuis tensor

Nt(X, Y) := [JtX, JtY] − [X, Y] − Jt[X, JtY] − Jt[JtX, Y]

is skew-symmetric, it is completely determined by
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Nt(X1, X2) = 0
Nt(X1, X3) = −4(1 +

√
2) csch t X3

Nt(X1, X4) = −4 csch t
(
2(3 + 2

√
2) csch t X3 − (1 +

√
2) X4

)
Nt(X2, X3) = −4 csch t

(
(2 +
√
2) csch t X3 − (1 +

√
2) X4

)
Nt(X2, X4) = 4(2 +

√
2) csch2 t X4

Nt(X3, X4) = 0.

It is clear that every component approaches zero uniformly as t →∞, and therefore Nt → 0.
Thus we see any such �liform 4-manifold Γ\G has an almost Kähler structure, and has an arbitrarily

small Nijenhuis tensor for another J, but no complex structure.

2.2 Filiform Lie algebra in Dimension 6

Consider the �liform Lie algebra g of dimension 6, with basis {X1, . . . , X6}, and only non-zero brackets de-
termined by

[X1, Xi] = Xi+1 for i = 2, 3, 4, 5.

A �liform 6-manifold M6 is a compact quotient Γ\G where Γ is a lattice in the simply connected Lie group G
associated to g.

According to [6], the Lie algebra gdoes not admit an integrable linear complex structure, and thus there is
no left invariant complex structure on any of the compact quotientsM6. To our knowledge, there is no known
complex structure on these manifolds, nor any proof that none of these compact quotients admit a complex
structure (as this is a widely open problem for all almost complex 6-manifolds). Incidentally, suchmanifolds
do admit an almost Kähler structure, e.g.

JX1 = X6, JX2 = X5, JX3 = −X4,

with
ω = x1 ∧ x6 + ∧x2x5 − x3 ∧ x4,

where {x1, . . . , x6} is the dual basis.
We give an example of a 1-parameter family Jt, of left-invariant almost-complex structures on any M6,

such that the Nijenhuis tensor Nt := N(Jt) satis�es Nt → 0 as t → ∞. In the ordered basis {X1, . . . , X6},
de�ne

Jt =



t2−1√
3(t2+1)

− 1
t3 0 0 0 0

4t3(t4+t2+1)
3(t2+1)2

− t2−1√
3(t2+1)

0 0 0 0

1 0 1√
3

1
t 0 0

− 2t3√
3(t2+1)

1
t2 −4t3 − 1√

3 0 0

0 − 5t4+4t2+1√
3t3(2t2+1)

8t2(t2+1)
3
√
3(2t2+1) − 4t5

6t4+9t2+3
1√
3

t2+1
t3

4t3(t4+t2+1)
3
√
3(2t4+3t2+1)

2
3 −16t

5(2t4+2t2+1)
9(t2+1)2(2t2+1)

− 8t4√
3(6t2+3)

− 4t3
3(t2+1) −

1√
3


.
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Then it is a long but straightforward algebraic computation to �nd the entries of the tensor Nt as given below:

Nt(X1, X2) = 1
t3 X4 +

(
t6 + 7t4 + 5t2 + 1

)
√
3t6
(
2t2 + 1

) X5 −
2
(
t2 + 1

)
3t
(
2t2 + 1

)X6
Nt(X1, X3) = − 2t√

3
(
t2 + 1

)X3 − 4
3
(
t2 + 1

)X4 − 8
(
t4 + t2 + 1

)
3
√
3t
(
t2 + 1

)2 X5
Nt(X1, X4) = − 1t2 X3 +

2t√
3
(
t2 + 1

)X4
Nt(X1, X5) = − 2√

3t
X5 −

4
3
(
t2 + 1

)X6
Nt(X1, X6) = −

(
t2 + 1

)2
t6

X5 +
2√
3t
X6

Nt(X2, X3) = 1
t4 X3 −

2√
3t3

X4 +
4
(
t4 + 3t2 + 1

)
3t2
(
t2 + 1

) (
2t2 + 1

)X5 − 8
3
√
3t
X6

Nt(X2, X4) = − 1t4 X4 +
2√
3t3

X5 −
4

3
(
2t2 + 1

)X6
Nt(X2, X5) =

(
t2 + 1

)
t6

X5 −
2√
3t3

X6

Nt(X2, X6) = −
(
t2 + 1

)
t6

X6

Nt(Xi , Xj) = 0 if i, j ≥ 3,

and so Nt → 0 as t →∞.

3 Solvmanifold examples
We give two families of examples of solvmanifolds of real dimension 4 which have no complex structures yet
have a family of almost complex structures whose Nijenhuis tensors tend to zero. Since there is no general
criterion to ensure the existence of a co-compact lattice in a simply connected solvable Lie group, we will
specify one which is co-compact in each case. As before, since the complex structures on g that we provide
are linear, they descend to any compact quotient.

3.1 A �rst class of 4d-solvmanifold examples

The �rst solvmanifold is taken from Fernández and Gray [4]. Consider the real 4-dimensional solvable Lie
algebra g, with basis X1, X2, X3, X4, and only non-zero brackets

[X1, X3] = −kX1
[X2, X3] = kX2,

for any k ≠ 0. This Lie algebra is the direct sum of the trivial one dimensional Lie algebra (generated by X4)
with the Lie algebra g(k) of the simply connected solvable (non-nilpotent) Lie group G(k) given by matrices
of the form 

ekz 0 0 x
0 e−kz 0 y
0 0 1 z
0 0 0 1

 .
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For this case, we take x, y, z ∈ R and k a real number such that ek + e−k is an integer di�erent than 2 (so that
k ≠ 0).

Let M4(k) = (Γ\G(k)) × S1, where Γ is any lattice of G(k) determined, as in ([1], Theorem 4 (4)), by the
subgroup of G(k) generated by matrices of the form

1 0 0 u1
0 1 0 u2
0 0 1 0
0 0 0 1

 ,

1 0 0 v1
0 1 0 v2
0 0 1 0
0 0 0 1

 ,

ekn 0 0 0
0 e−kn 0 0
0 0 1 n
0 0 0 1

 ,
where n ∈ N, and (u1, u2) and (v1, v2) are linearly independent.

This Lie algebra is completely solvable, i.e. the adjoint action adX has real eigenvalues for all X. By a
theorem of Hattori [9], one can compute the de Rham cohomology of any associated completely solvmanifold
Γ\G from the cohomology of the Lie algebra.

Using the brackets above, it is easy to see that x3 and x4 generateH1(M4), and x1∧x2 and x3∧x4 generate
H2(M4), so that the Betti numbers of M4 are b1 = b2 = b3 = 2. Since b1 = 2 and M4(k) is parallelizable,
then by a result of Fernández and Gray [4], M4(k) does not have a complex structure. As also pointed out in
[4], these manifolds nevertheless are formal, symplectic, and moreover satisfy all the known cohomological
properties of a Kähler manifold.

Since themanifoldsM4(k) all have the sameminimalmodel as S1×S1×S2, as shown in [4], this shows that
there is no algebraic condition on the minimal model of four manifolds implying the existence of a complex
structure. A. Milivojevic obtained a similar result in dimension 2n = 6 and greater using a geometric argu-
ment, namely, for every almost complex manifold, he constructs a non-almost-complex manifold by taking
its connected sum with a non-spinc simply connected rational homology sphere [11].

For any k ≠ 0, consider the family of linear almost complex structures on g de�ned in the ordered basis
{X1, . . . , X4} by

Jt =



−2
kt2

−1√
3 −6+

√
3kt2+2k2 t4
3k2 t3

6−
√
3kt2+2k2 t4
3k2 t5

−1√
3 0 −1√

3kt −
2t
3

√
3−2kt2
3kt3

1
t

1
t

1√
3 +

1
kt2

−1
kt4

−t t −1
k

−1√
3 +

1
kt2


.

Then the Nijenhuis tensor is determined by

Nt(X1, X2) =
−2k√
3t

(X1 + X2) +
2k
t2 X3

Nt(X1, X3) =
1
t

(
2k√
3
X3 + X4

)
+ 1
t2

(
−1√
3
X1 +

1√
3
X2
)
− 1
t3 X3 +

2
kt4 X1

Nt(X1, X4) =
2
kt6

X1 −
1
t5 X3 +

1√
3t4

(X2 − X1) +
1
t3 X4 +

2k
3t2 (X1 + X2)

Nt(X2, X3) =
−2
kt4 X1 −

1
t3 X3 +

1√
3t2

(3X1 + X2) +
1
t

(
−2k√
3
X3 − X4

)
Nt(X2, X4) =

2
kt6

X1 +
1
t5 X3 −

1√
3t4

(3X1 + X2) +
1
t3 X4 +

2k
3t2 (X1 + X2)

Nt(X3, X4) =
4
k2t7 X1 −

2
kt6

X3 +
2√
3kt5

(X2 − X1) +
2
t4

(
1√
3
X3 +

1
k X4

)
+ 2
3t3 (X1 + X2) −

4k
3t2 X3 +

4k
3
√
3t

(X1 + X2) .

Then, for each k ≠ 0, Nt → 0 as t →∞, as claimed.
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3.2 A second class of 4d-solvmanifold examples

The next class of almost complex manifolds that admit no complex structure are taken from Hasegawa ([8],
Section 4, Example 2). Consider the Lie group R3 oϕ R, where ϕ : R → Aut(R3), and R and R3 have the
standard additive structures. In order to ensure there is a lattice, we choose ϕ(1) = A ∈ SL(3,Z), and restrict
to the case that A has three real, positive, distinct eigenvalues. There are many such examples, e.g.

A =

0 0 1
1 0 −k
0 1 8


for any integer kwith6 ≤ k ≤ 15, (c.f. Bock [2]). Then the action ofA onZ3 canbe extended toϕ : R→ Aut(R3)
by de�ning ϕt = exp(t logA), and Γ = Z3 oϕ Z is a lattice in G = R3 oϕ R. Since the eigenvalues of A are
distinct, we can write A = VDV−1, with D diagonal having entries eλ1 , eλ2 , e−(λ1+λ2), and V is a matrix whose
columns are the respective eigenvectors. Let X1 be the standard basis vector forR, and let {X2, X3, X4} be the
columns of V−1.

The derivative of ϕ : R → Aut(R3) at zero is the map ϕ : R → End(R3) sending X1 to left multiplication
by logA. So, in the standard basis {Ei} of R × R3, with E1 = X1, the Lie algebra of G has non-zero brackets
determined by

[E1, Ei] = (logA) Ei ,

for i = 2, 3, 4. Equivalently, the transport of the Lie bracket by V, de�ned by { , } := V−1 ◦ [V(−), V(−)],
satis�es

{X1, X2} = λ1X2
{X1, X3} = λ2X3
{X1, X4} = −(λ1 + λ2)X4.

Note that the �rst Betti number of Γ\G is equal to one unless any of λ1, λ2, or (λ1 + λ2) are zero.
According to Hasegawa’s classi�cation of compact complex 4-dimensional solvmanifolds, any such solv-

manifold Γ\G does not have a complex structure ([8], Section 4, Example 2).
To give a 1-parameter family of almost complex structures Jt on

(
g, [ , ]

)
with NJt → 0, it su�ces to give

almost complex structures Kt on (g, { , }) in the basis {X1, X2, X3, X4}, with NKt → 0, for then wemay de�ne
Jt := V−1KtV. To this end, in the ordered basis {X1, . . . , X4}, let

Kt =



1 1/t 2(λ1+2λ2)
(λ1−λ2)t 0

−2(2λ1+λ2)tλ1−λ2 −2λ1+λ2λ1−λ2 −2(2λ1+λ2)(λ1+2λ2)(λ1−λ2)2
λ1+2λ2
(λ1−λ2)t

t 1/2 λ1+2λ2
λ1−λ2

−1
2t

0 t 2(2λ1+λ2)t
λ1−λ2 0


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Then the Nijenhuis tensor of Kt is determined by

Nt(X1, X2) =
λ1 + 2λ2

t X1

Nt(X1, X3) =
2(2λ1 + λ2)(λ1 + 2λ2)

(λ1 − λ2)t
X1

Nt(X1, X4) = −
(
λ1 + 2λ2
t2

)
X1 +

(
2(2λ1 + λ2)(λ1 + 2λ2)

(λ1 − λ2)t

)
X2 −

(
λ1 + 2λ2

t

)
X3

Nt(X2, X3) =
(
2 (λ1 + 2λ2)

t2

)
X1 −

(
2(2λ1 + λ2)(λ1 + 2λ2)

(λ1 − λ2)t

)
X2 +

(
λ1 + 2λ2

t

)
X3

Nt(X2, X4) =
(
(2λ1 + λ2)(λ1 + 2λ2)

(λ1 − λ2)t2

)
X2 −

(
λ1 + 2λ2
2t2

)
X3

Nt(X3, X4) =
(
2(2λ1 + λ2)(λ1 + 2λ2)

2

(λ1 − λ2)2t2

)
X2 −

(
(λ1 + 2λ2)2

(λ1 − λ2) t2

)
X3.

So, Nt → 0 as t →∞.
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