Startseite The mechanical properties of a joint of Sn-3.5Ag-1Zn solder and Cu substrate with aging treatment
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The mechanical properties of a joint of Sn-3.5Ag-1Zn solder and Cu substrate with aging treatment

  • Doh Jae Lee , Dae Hwa Baek EMAIL logo , Kyung Ku Lee , Kwang Min Lee und Youn Jong Seo
Veröffentlicht/Copyright: 22. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The effect of thickening of intermetallic compound layers formed at the interface and shear properties of solder joints are studied as a function of aging for lead-free solders. The modified double lap shear test method is employed to measure the shear strength and shear strain. The test specimens are Sn-3.5Ag and Sn-3.5Ag-1Zn solders and they were aged up to 2880 h at 423 K.

Intermetallic compound layers at the interface between Sn-3.5Ag solders and Cu substrate grow with increasing aging time. The coarsened Cu6Sn5 intermetallic compounds lead to a deterioration of the shear properties of solder joints by changing the crack propagation path and decreasing shear strength of the solder joint. Adding 1 wt% of Zn to Sn-3.5Ag, however, suppresses Cu6Sn5 intermetallic compound growth markedly by forming a Cu–Zn–Sn layer. This Cu–Zn–Sn layer acts as a diffusion barrier between Cu6Sn5 and Sn-3.5Ag-1Zn solders during the aging treatments. Thus, Sn-3.5Ag-1Zn solders have higher shear strength and higher strain to fracture than those of Sn-3.5Ag/Cu solder joints.


Dedicated to Professor Dr. Duk Yong Yoon on the occasion of his 65th birthday

Dr. Dae Hwa Baek Gwangju-Jeonnam Regional Small and Medium Business Administration 300, Nongsong 1-dong Seogu, Gwangju-city, South Korea Tel.: +82 62 360 9175 Fax: +82 62 366 9669

References

[1] M.E. Loomans, S. Vaynman, G. Ghosh, M.E. Fine: J. of Electron. Mater. 23(1994) 741.10.1007/BF02651368Suche in Google Scholar

[2] J. Glazer: Intern. Mater. Rev. 40(1995) 65.10.1179/imr.1995.40.2.65Suche in Google Scholar

[3] E.P. Wood, K.L. Nimmo: J. of Electron. Mater. 23(1994) 709.10.1007/BF02651363Suche in Google Scholar

[4] C.H. Reader, L.E. Felton, V.A. Tanzi, D.B. Knorr: J. of Electron. Mater. 23(1994) 611.10.1007/BF02653346Suche in Google Scholar

[5] W. Yang, R.W. Merssler, L.E. Felton: J. of Electron. Mater. 23(1994) 765.10.1007/BF02651371Suche in Google Scholar

[6] L.E. Felton, C.H. Reader, D.B. Knorr: JOM. 2(1993) 28.10.1007/BF03222377Suche in Google Scholar

[7] M. Harada, R. Satoh: IEEE Transactions on Component, Hybrids and Manufacturing Technology 13(1990) 736.10.1109/33.62587Suche in Google Scholar

[8] K. Uenishi, Y. Kohara, S. Sakatani, K.F. Kobayashi, M. Yamamoto: Mater. Trans. 43(2002) 1833.10.2320/matertrans.43.1833Suche in Google Scholar

[9] M.E. Loomans, M.E. Fine: Metall. Mater. Trans. A 31(2000) 1155.10.1007/s11661-000-0111-5Suche in Google Scholar

[10] M. Ohnuma, M. Miyashita, K. Anzai, X.J. Liu, H. Ohtani, R. Kainuma, K. Ishida: J. of Electron. Mater. 29(2000) 1137.10.1007/s11664-000-0004-9Suche in Google Scholar

[11] W.K. Choi, H.M. Lee: J. of Electron. Mater. 28(1999) 1251.10.1007/s11664-999-0164-1Suche in Google Scholar

[12] K.H. Prakash, T. Sritharan: Mater. Sci. and Engin. (2004) 1.Suche in Google Scholar

[13] D.R. Frear, P.T. Vicano: Metall. and mater. Trans. A-Phys. Metal. and Mater. Sci. 25(1994) 1509.10.1007/BF02665483Suche in Google Scholar

[14] H.T. Lee, M.H. Chen, H.M. Jao, T.L. Liao: Mater. Sci. and Engin.A 358(2003) 134.10.1016/S0921-5093(03)00277-6Suche in Google Scholar

[15] K.S. Kim, S.H. Huh, K. Suganuma: J. of Alloys and Comp. 352(2003) 226.10.1016/S0925-8388(02)01166-0Suche in Google Scholar

[16] D.Q. Yu, J. Zhao, L. Wang: J. of Alloy and Comp. 376(2004) 170.10.1016/j.jallcom.2004.01.012Suche in Google Scholar

[17] T.C. Chang, M.C. Wang, M.H. Hon: J. of Crystal Growth 263(2004) 223.10.1016/j.jcrysgro.2003.05.002Suche in Google Scholar

[18] A. Hirose, H. Yanagawa, E. Ide, K.F. Kobayashi: Sci. and Techn.of Adv. Mater. 5(2004) 267.10.1016/j.stam.2003.10.024Suche in Google Scholar

[19] T.C. Chang, M.C. Wang, M.H. Hon: J. of Crystal Growth 252(2003) 401.10.1016/S0022-0248(02)02480-6Suche in Google Scholar

[20] S.C. Cheng, K.L. Lin: J. of Electron. Mater. 31(2002) 940.10.1007/s11664-002-0187-3Suche in Google Scholar

[21] J. Sigelko, S. Choi, K.N. Subramanian, J.P. Lucas, T.R. Bieler: J.of Electron. Mater. 28(1999) 1184.10.1007/s11664-999-0155-2Suche in Google Scholar

[22] W. Yang, R.W. Messler-RW, Jr., L.E. Felton: Welding Research Supplement 74(1995) 224.Suche in Google Scholar

[23] W. Yang, L.E. Felton, R.W. Messler-RW, Jr.: J. of Electron. Mater.24 (1995) 1465.10.1007/BF02655465Suche in Google Scholar

[24] W.J. Tomlinson, A. Fullylove: J. Mater. Sci. 27(1992) 5777.10.1007/BF01119737Suche in Google Scholar

[25] M.J. Chung, K.K. Lee, D.J. Lee: Korean J. of Mater. Res. 9(1999)747.Suche in Google Scholar

[26] A.J. Kinloch: J. Mater. Sci. 17(1982) 617.10.1007/BF00540361Suche in Google Scholar

[27] C. Kanchanomai, Y. Miyashita, Y. Mutoh, S.L. Mannan: Mater.Sci. and Engin. A 345(2003) 90.10.1016/S0921-5093(02)00461-6Suche in Google Scholar

[28] R.J. Fields, S.R. LowIII, G.K. Lucey, Jr.: The metal science of joining (1992) 165.Suche in Google Scholar

[29] Y. Kariya, M. Otsuka: J. of Electron. Mater. 27(1998) 1229.10.1007/s11664-998-0074-7Suche in Google Scholar

[30] M. McCormack, G.W. Kammlott, H.S. Chen, S. Jin: Appl. Phys.Lett. 65(1994) 1233.10.1063/1.112080Suche in Google Scholar

[31] S. Ju, B. Sandor, M.E. Plesha: J. of Testing and Evaluation 24(1996) 411.10.1520/JTE11465JSuche in Google Scholar

Received: 2004-08-20
Accepted: 2004-10-07
Published Online: 2022-01-22

© 2005 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Solute drag illustrated graphically
  6. Dopant effect on high-temperature plastic flow behavior and grain boundary chemistry in oxide ceramics
  7. Anomalous behaviour in diffusion impedance of intercalation electrodes
  8. A simple model of fully-faceted grain growth and coarsening with non-linear growth laws
  9. Thermal conductivity of functionally graded Fe–Cu–C alloy processed by liquid phase sintering and carburization
  10. Microstructure development during liquid-phase sintering
  11. The mechanical properties of a joint of Sn-3.5Ag-1Zn solder and Cu substrate with aging treatment
  12. Three-dimensional morphological characterization of coarsened microstructures
  13. Faceting and migration of twin grain boundaries in zinc
  14. Effect of external electric field on the microstructural evolution of La2O3-doped BaTiO3 ceramics
  15. Hardness and fracture toughness of ultra-fine WC-10Co-X cemented carbides prepared from nanocrystalline powders
  16. Systematic study of grain boundary atomistic structures and related properties in cubic zirconia bicrystals
  17. Spontaneous generation of charged atoms or clusters during thermal evaporation of silver
  18. The influence of singular surfaces and morphological changes on coarsening
  19. Electrical activity of grain boundaries in polycrystalline silicon – influences of grain boundary structure, chemistry and temperature
  20. Changes in the distribution of interfaces in PMN-35 mol% PT as a function of time
  21. Study of the effect of heat treatment on a Pt–Co thin film by Monte Carlo simulations coupled with a modified embedded atom method
  22. The influence of misorientation deviation on the faceting of Σ3 grain boundaries in aluminium
  23. Notifications/Mitteilungen
  24. Personal/Personelles
  25. Materials Week
  26. Conferences/ Konferenzen
Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2005-0026/html
Button zum nach oben scrollen