Home Effect of external electric field on the microstructural evolution of La2O3-doped BaTiO3 ceramics
Article
Licensed
Unlicensed Requires Authentication

Effect of external electric field on the microstructural evolution of La2O3-doped BaTiO3 ceramics

  • Hong-Ri Jin , Seok-Hyun Yoon , Jong-Heun Lee EMAIL logo , Nong M. Hwang , Doh-Yeon Kim and Joo-Hwan Han
Published/Copyright: January 22, 2022
Become an author with De Gruyter Brill

Abstract

The grain growth behavior of La-doped BaTiO3 specimens was investigated at 1350 °C under DC external electric field. In air atmosphere, grain growth was enhanced at the positive-biased region for the 0.15 mol% La-doped and 0.3 mol% La-doped specimens, while it was enhanced at the negative-biased region for the 1.0 mol% La-doped specimen. For the 0.6 mol% La-doped specimen, on the other hand, both positive- and negative-biased regions showed the same grain size. The demarcation donor composition (0.6 mol% La) shifted to a higher donor concentration when the specimen was heat-treated in nitrogen. The results were explained in terms of the grain boundary potential and its variation with donor concentration, oxygen partial pressure, and defect polarization.


Dedicated to Professor Dr. Duk Yong Yoon on the occasion of his 65th birthday

Prof. Jong-Heun Lee Division of Materials Science and Engineering, Korea University, Seoul 136-701, Korea Tel.: +82 2 3290 3282 Fax: +82 2 928 3584

References

[1] W.D. Kingery: Pure Appl. Chem. 56 (1984) 1703.10.1351/pac198456121703Search in Google Scholar

[2] Y.-M. Chiang, T. Takagi: J. Am. Ceram. Soc. 73 (1990) 3278.10.1111/j.1151-2916.1990.tb06450.xSearch in Google Scholar

[3] J. Nowotny: Solid State Ionics 28–30 (1988) 1235.10.1016/0167-2738(88)90363-3Search in Google Scholar

[4] R.J. Schwensfir Jr., C. Elbaum: J. Phys. Chem. Solids 28 (1967) 597.10.1016/0022-3697(67)90090-XSearch in Google Scholar

[5] J.-W. Jeong, J.-H. Han, D.-Y. Kim: J. Am. Ceram. Soc. 83 (2000) 915.10.1111/j.1151-2916.2000.tb01294.xSearch in Google Scholar

[6] J.-I. Choi, J.-H. Han, D.-Y. Kim: J. Am. Ceram. Soc. 86 (2003) 347.10.1111/j.1151-2916.2003.tb00021.xSearch in Google Scholar

[7] H.-R. Jin, S.-H. Yoon, J.-H. Lee, J.-H. Lee, N.-M. Hwang, D.-Y. Kim: J.-H. Han: J. Am. Ceram. Soc. 87 (2004) 1747.10.1111/j.1551-2916.2004.01747.xSearch in Google Scholar

[8] H.-R. Jin, S.-H. Yoon, J.-H. Lee, N.-M. Hwang, D.-Y. Kim, J.-H. Han: J. Am. Ceram. Soc., submitted. Search in Google Scholar

[9] J.H. Han, D.Y. Kim: Acta Mater. 46 (1998) 2021. 10.1016/S1359-6454(97)00442-4Search in Google Scholar

[10] M. Drofenik: J. Am. Ceram. Soc. 70 (1987) 311. 10.1111/j.1151-2916.1987.tb04999.xSearch in Google Scholar

[11] H.M. Chan, M.P. Harmer, D.M. Smyth: J. Am. Ceram. Soc. 69 (1986) 507. 10.1111/j.1151-2916.1986.tb07453.xSearch in Google Scholar

[12] S.B. Desu, D.A. Payne: J. Am. Ceram. Soc. 73 (1990) 3391. 10.1111/j.1151-2916.1990.tb06466.xSearch in Google Scholar

[13] S.B. Desu, D.A. Payne: J. Am. Ceram. Soc. 73 (1990) 3407. 10.1111/j.1151-2916.1990.tb06468.xSearch in Google Scholar

[14] S.-H. Yoon, J.-H. Lee, D.-Y. Kim, N.-M. Hwang: J. Am. Ceram.Soc. 86 (2003) 88. 10.1111/j.1151-2916.2003.tb03282.xSearch in Google Scholar

[15] J.-H. Han, D.-Y. Kim: J. Am. Ceram. Soc. 84 (2001) 539.10.1111/j.1151-2916.2001.tb00695.xSearch in Google Scholar

[16] M.F. Yan, R.M. Cannon, H.K. Bowen: J. Appl. Phys. 54 (1983) 764.10.1063/1.332035Search in Google Scholar

[17] J.A.S. Ikeda, Y.-M. Chiang: J. Am. Ceram. Soc. 76 (1993) 2437. 10.1111/j.1151-2916.1993.tb03964.xSearch in Google Scholar

[18] N.-H. Chan, R.K. Sharma, D.M. Smyth: J. Am. Ceram. Soc. 65 (1982) 167. 10.1111/j.1151-2916.1982.tb10388.xSearch in Google Scholar

[19] C.J. Peng, H.-Y. Liu: J. Am. Ceram. Soc. 71 (1988) C44. Search in Google Scholar

[20] J. Daniels, K.H. Hardtl, D. Henning, R. Wernicke: Phillips Res. Rep. 31 (1976) 487. Search in Google Scholar

[21] T.-B. Wu, J.-N. Lin: J. Am. Ceram. Soc. 77 (1994) 759.10.1111/j.1151-2916.1994.tb05362.xSearch in Google Scholar

[22] N.-H. Chan, D.M. Smyth: J. Am. Ceram. Soc. 67 (1984) 285.10.1111/j.1151-2916.1984.tb18849.xSearch in Google Scholar

[23] G.V. Lewis, C.R.A. Catlow, R.E.W. Casselton: J. Am. Ceram. Soc. 68 (1985) 555. 10.1111/j.1151-2916.1985.tb11523.xSearch in Google Scholar

[24] S.H. Yoon, H. Kim: J. Mater. Res. 16 (2000) 1479. 10.1557/JMR.2001.0206Search in Google Scholar

[25] S.H. Yoon, K.H. Lee, H. Kim: J. Am. Ceram. Soc. 83 (2000) 2463. 10.1111/j.1151-2916.2000.tb01577.xSearch in Google Scholar

[26] R. Waser, T. Baiatu, K.-H. Härdtl: J. Am. Ceram. Soc. 73 (1990) 1645. 10.1111/j.1151-2916.1990.tb09809.xSearch in Google Scholar

[27] R. Waser, T. Baiatu, K.-H. Härdtl: J. Am. Ceram. Soc. 73 (1990) 1654. 10.1111/j.1151-2916.1990.tb09810.xSearch in Google Scholar

[28] J. Daniels, K.-H. Härdtl, R. Wernicke: Philips Tech. Rev. 38 (1978/79) 73. Search in Google Scholar

[29] H.-I. Yoo, D.-K. Lee: Phys. Chem. Chem. Phys. 5 (2003) 2212. 10.1039/B300169PSearch in Google Scholar

[30] J.-H. Lee, Y.-S. Jung, H.-S. Woo, Y.-C. Chung, D.-Y. Kim: J. Euro. Ceram. Soc. 24 (2004) 1129.10.1016/S0955-2219(03)00584-3Search in Google Scholar

[31] D. Makovec, M. Dorfenic: J. Am. Ceram. Soc. 83 (2000) 2593.10.1111/j.1151-2916.2000.tb01594.xSearch in Google Scholar

Received: 2004-08-09
Accepted: 2004-10-12
Published Online: 2022-01-22

© 2005 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Solute drag illustrated graphically
  6. Dopant effect on high-temperature plastic flow behavior and grain boundary chemistry in oxide ceramics
  7. Anomalous behaviour in diffusion impedance of intercalation electrodes
  8. A simple model of fully-faceted grain growth and coarsening with non-linear growth laws
  9. Thermal conductivity of functionally graded Fe–Cu–C alloy processed by liquid phase sintering and carburization
  10. Microstructure development during liquid-phase sintering
  11. The mechanical properties of a joint of Sn-3.5Ag-1Zn solder and Cu substrate with aging treatment
  12. Three-dimensional morphological characterization of coarsened microstructures
  13. Faceting and migration of twin grain boundaries in zinc
  14. Effect of external electric field on the microstructural evolution of La2O3-doped BaTiO3 ceramics
  15. Hardness and fracture toughness of ultra-fine WC-10Co-X cemented carbides prepared from nanocrystalline powders
  16. Systematic study of grain boundary atomistic structures and related properties in cubic zirconia bicrystals
  17. Spontaneous generation of charged atoms or clusters during thermal evaporation of silver
  18. The influence of singular surfaces and morphological changes on coarsening
  19. Electrical activity of grain boundaries in polycrystalline silicon – influences of grain boundary structure, chemistry and temperature
  20. Changes in the distribution of interfaces in PMN-35 mol% PT as a function of time
  21. Study of the effect of heat treatment on a Pt–Co thin film by Monte Carlo simulations coupled with a modified embedded atom method
  22. The influence of misorientation deviation on the faceting of Σ3 grain boundaries in aluminium
  23. Notifications/Mitteilungen
  24. Personal/Personelles
  25. Materials Week
  26. Conferences/ Konferenzen
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2005-0029/html
Scroll to top button