Abstract
Microstructure development during liquid-phase sintering has been analysed using the pore-filling theory. The interdependence between sintered density and average grain size, i. e., the relative density – grain size trajectory has been described for various types of processing and sintering parameters. The effects of sintering temperature, initial porosity, average pore size, liquid volume fraction, dihedral and wetting angle, and sintering atmosphere pressure have been evaluated. A critical examination has also been made of the factors determining the trajectory shape and the implication of activation energy for densification. The predicted microstructure developments should demonstrate various possibilities of controlling microstructure during liquid-phase sintering.
References
[1] R.L. Coble: J. Appl. Phys. 32 (1961) 789.Suche in Google Scholar
[2] R.J. Brook:J. Am. Ceram. Soc. 52 (1969) 56.10.1111/j.1151-2916.1969.tb12664.xSuche in Google Scholar
[3] C.H. Hsueh, A.G. Evans, R.L. Coble: Acta. Metall. 30 (1982)1269.10.1016/0001-6160(82)90145-6Suche in Google Scholar
[4] M.A. Spears, A.G. Evans: Acta Metall. 30 (1982) 1281.10.1016/0001-6160(82)90146-8Suche in Google Scholar
[5] M.F. Yan: Mater. Sci. Eng. 48 (1981) 53.10.1016/0025-5416(81)90066-5Suche in Google Scholar
[6] R.J. Brook: Brit. Ceram. Soc. 32 (1982) 7.Suche in Google Scholar
[7] S. Wu, E. Gilbart, R.J. Brook,in: W.D. Kingery (Ed.), Structure and Properties of MgO and Al2O3 Ceramics, American Ceramic Society, Westerville, OH (1984) 574.Suche in Google Scholar
[8] M.P. Harmer,in: W.D. Kingery (Ed.), Structure and Properties of MgO and Al2O3 Ceramics, American Ceramic Society, Westerville, OH (1984) 679.Suche in Google Scholar
[9] J. Zhao, M.P. Harmer: J. Am. Ceram. Soc. 71 (1988) 113.10.1111/j.1151-2916.1988.tb05826.xSuche in Google Scholar
[10] W.D. Kingery: J. Appl. Phys. 30 (1959) 301.10.1063/1.1735155Suche in Google Scholar
[11] J. Svoboda, H. Riedel, R. Gaebel: Acta Mater. 44 (1996) 3215.10.1016/1359-6454(95)00440-8Suche in Google Scholar
[12] A. Mortensen: Acta Mater. 45 (1997) 749.10.1016/S1359-6454(96)00202-9Suche in Google Scholar
[13] D.Y. Yoon, W.J. Huppmann: Acta Metall. 27 (1979) 693.10.1016/0001-6160(79)90020-8Suche in Google Scholar
[14] S.-J.L. Kang, W.A. Kaysser, G. Petzow, D.N. Yoon: Acta Metall.33 (1985) 1919.10.1016/0001-6160(85)90014-8Suche in Google Scholar
[15] D.-D. Lee, S.-J.L. Kang, D.N. Yoon: Scripta Metall. 24 (1990)927.10.1016/0956-716X(90)90139-8Suche in Google Scholar
[16] W.A. Kaysser, G. Petzow: Z. Metallkd. 76 (1985) 687.Suche in Google Scholar
[17] W.A. Kaysser, M. Zivkovic, G. Petzow: J. Mater. Sci. 20 (1985) 578.10.1007/BF01026528Suche in Google Scholar
[18] K.-H. Kim, S.-J.L. Kang: J. Kor. Inst. Metals 31 (1993) 398.Suche in Google Scholar
[19] O.-J. Kwon, D.N. Yoon, in: G.C. Kuczynski (Ed.), Proc. 5th Int. Conf. in Sintering and Related Phenomena, June 1979, Notre Dame, Plenum Press, New York (1980) 203.Suche in Google Scholar
[20] O.-J. Kwon, D.N. Yoon: Powder Techn. 17 (1981) 127.Suche in Google Scholar
[21] H.-H. Park, S.-J. Cho, D.N. Yoon: Metall. Trans. A 15 (1984)1075.10.1007/BF02644700Suche in Google Scholar
[22] S.-J. L. Kang, W.A. Kaysser, G. Petzow, D.N. Yoon: Powder Metall. 27 (1984) 97.10.1179/pom.1984.27.2.97Suche in Google Scholar
[23] S.-J.L. Kang, P. Azou: Powder Metall. 28 (1985) 90.10.1179/pom.1985.28.2.90Suche in Google Scholar
[24] S.-J. Cho, S.-J.L. Kang, D.N. Yoon: Metall. Trans. A 17 (1986) 2175.10.1007/BF02645915Suche in Google Scholar
[25] S.-J.L. Kang, P. Greil, M. Mitomo, J.-H. Moon: J. Am. Ceram.Soc. 72 (1989) 1166.10.1111/j.1151-2916.1989.tb09702.xSuche in Google Scholar
[26] J.K. Park, S.-J.L. Kang, K.Y. Eun, D.N. Yoon: Metall. Trans. A 20 (1989) 837.10.1007/BF02651650Suche in Google Scholar
[27] S.-M. Lee, S.-J.L. Kang: Z. Metallkd. 92 (2001) 669.Suche in Google Scholar
[28] H.-H. Park, O.-J. Kwon, D.N. Yoon: Metall. Trans. A 17 (1986)1915.10.1007/BF02644989Suche in Google Scholar
[29] S.-J.L. Kang, K.-H. Kim, D.N. Yoon: J. Am. Ceram. Soc. 74 (1991) 425.10.1111/j.1151-2916.1991.tb06900.xSuche in Google Scholar
[30] S.-J.L. Kang, K.-H. Kim, S.-M. Lee,in: R.M. German, G.L. Messing, R.G. Cornwall (Eds.), Sintering Technology, Marcel Dekker,Inc. (1996) 221.Suche in Google Scholar
[31] S.-M. Lee, S.-J.L. Kang: Acta. Mater. 46 (1998) 3191.10.1016/S1359-6454(97)00489-8Suche in Google Scholar
[32] I.M. Lifshitz, V.V. Slyozov: Phys. Chem. Solids. 19 (1961) 35.10.1016/0022-3697(61)90054-3Suche in Google Scholar
[33] C. Wagner: Z. Elektrochem. 65 (1961) 581.Suche in Google Scholar
[34] D.D. Lee, S.-J.L. Kang, D.N. Yoon: J. Am. Ceram. Soc. 17 (1988)803.10.1111/j.1151-2916.1988.tb06417.xSuche in Google Scholar
[35] S.-J.L. Kang, S.-M. Han: MRS Bull. 20 (1995) 33.10.1557/S0883769400049198Suche in Google Scholar
[36] A.J. Ardell: Acta Metall. 20 (1972) 61.10.1016/0001-6160(72)90114-9Suche in Google Scholar
[37] A.D. Brailsford, P. Wynblatt: Acta Metall. 27 (1979) 489.10.1016/0001-6160(79)90041-5Suche in Google Scholar
[38] R.T. DeHoff: Acta Metall. Mater. 39 (1991) 2349.10.1016/0956-7151(91)90016-TSuche in Google Scholar
[39] R.M. German, E.A. Olevsky: Metall. Mater. Trans. A 29 (1998) 3057.10.1007/s11661-998-0213-zSuche in Google Scholar
[40] S.S. Kang, D.N. Yoon: Metall. Trans. A 13 (1982) 1405.10.1007/BF02642878Suche in Google Scholar
[41] W.D. Kingery, B. François, in: G.C. Kuczynski, N.A. Hooton,C. Gibbon (Eds.), Sintering and Related Phenomena, Gordon Breach, N.Y. (1967) 471.Suche in Google Scholar
[42] F.F. Lange: J. Am. Ceram. Soc., 67 (1984) 83.10.1111/j.1151-2916.1984.tb09620.xSuche in Google Scholar
[43] Y.P. Kim: M.S. Thesis, Korea Advanced Institute of Science and Technology, Daejon, Korea, 2000.Suche in Google Scholar
[44] J.-C. Baung, Y.-G. Choi, E.-S. Kang, Y.-K. Baek, S.-W. Jung, S.-J.L. Kang: J. Korean Ceram. Soc. 38 (2001) 207.Suche in Google Scholar
[45] W.J. Huppmann, H. Riegger: Acta. Metall. 23 (1975) 965.10.1016/0001-6160(75)90010-3Suche in Google Scholar
[46] W.J. Huppmann, W. Bauer: Powder Metall. 18 (1975) 249.10.1179/pom.1975.18.36.001Suche in Google Scholar
[47] W.J. Huppmann, H. Riegger, W.A. Kaysser, V. Smolej, S. Pejovnik: Z. Metallkd. 70 (1979) 707.Suche in Google Scholar
[48] M. Nicholas, D.M. Poole: J. Mater. Sci. 2 (1967) 269.10.1007/BF00555384Suche in Google Scholar
[49] T.-H. Ihn, S.-W. Lee, S.-K. Joo: Powder Metall. 37 (1994) 283.10.1179/pom.1994.37.4.283Suche in Google Scholar
[50] V. Merlin, N. Eustathopoulos: J. Mater. Sci. 30 (1995) 3619.10.1007/BF00351875Suche in Google Scholar
[51] Y.-K. Paek, K.-Y. Eun, S.-J.L. Kang: J. Am. Ceram. Soc. 71 (1988) C380.10.1111/j.1151-2916.1988.tb06398.xSuche in Google Scholar
[52] S.-J.L. Kang, K.J. Yoon: J. Eur. Ceram. Soc. 5 (1989) 135.10.1016/0955-2219(89)90020-4Suche in Google Scholar
[53] K.J. Yoon, S.-J.L. Kang: J. Eur. Ceram. Soc. 6 (1990) 201.10.1016/0955-2219(90)90018-BSuche in Google Scholar
[54] U.-C. Oh, Y.-S. Chung, D.-Y. Kim: J. Am. Ceram. Soc. 71 (1988) 854.10.1111/j.1151-2916.1988.tb07535.xSuche in Google Scholar
© 2005 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Solute drag illustrated graphically
- Dopant effect on high-temperature plastic flow behavior and grain boundary chemistry in oxide ceramics
- Anomalous behaviour in diffusion impedance of intercalation electrodes
- A simple model of fully-faceted grain growth and coarsening with non-linear growth laws
- Thermal conductivity of functionally graded Fe–Cu–C alloy processed by liquid phase sintering and carburization
- Microstructure development during liquid-phase sintering
- The mechanical properties of a joint of Sn-3.5Ag-1Zn solder and Cu substrate with aging treatment
- Three-dimensional morphological characterization of coarsened microstructures
- Faceting and migration of twin grain boundaries in zinc
- Effect of external electric field on the microstructural evolution of La2O3-doped BaTiO3 ceramics
- Hardness and fracture toughness of ultra-fine WC-10Co-X cemented carbides prepared from nanocrystalline powders
- Systematic study of grain boundary atomistic structures and related properties in cubic zirconia bicrystals
- Spontaneous generation of charged atoms or clusters during thermal evaporation of silver
- The influence of singular surfaces and morphological changes on coarsening
- Electrical activity of grain boundaries in polycrystalline silicon – influences of grain boundary structure, chemistry and temperature
- Changes in the distribution of interfaces in PMN-35 mol% PT as a function of time
- Study of the effect of heat treatment on a Pt–Co thin film by Monte Carlo simulations coupled with a modified embedded atom method
- The influence of misorientation deviation on the faceting of Σ3 grain boundaries in aluminium
- Notifications/Mitteilungen
- Personal/Personelles
- Materials Week
- Conferences/ Konferenzen
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Solute drag illustrated graphically
- Dopant effect on high-temperature plastic flow behavior and grain boundary chemistry in oxide ceramics
- Anomalous behaviour in diffusion impedance of intercalation electrodes
- A simple model of fully-faceted grain growth and coarsening with non-linear growth laws
- Thermal conductivity of functionally graded Fe–Cu–C alloy processed by liquid phase sintering and carburization
- Microstructure development during liquid-phase sintering
- The mechanical properties of a joint of Sn-3.5Ag-1Zn solder and Cu substrate with aging treatment
- Three-dimensional morphological characterization of coarsened microstructures
- Faceting and migration of twin grain boundaries in zinc
- Effect of external electric field on the microstructural evolution of La2O3-doped BaTiO3 ceramics
- Hardness and fracture toughness of ultra-fine WC-10Co-X cemented carbides prepared from nanocrystalline powders
- Systematic study of grain boundary atomistic structures and related properties in cubic zirconia bicrystals
- Spontaneous generation of charged atoms or clusters during thermal evaporation of silver
- The influence of singular surfaces and morphological changes on coarsening
- Electrical activity of grain boundaries in polycrystalline silicon – influences of grain boundary structure, chemistry and temperature
- Changes in the distribution of interfaces in PMN-35 mol% PT as a function of time
- Study of the effect of heat treatment on a Pt–Co thin film by Monte Carlo simulations coupled with a modified embedded atom method
- The influence of misorientation deviation on the faceting of Σ3 grain boundaries in aluminium
- Notifications/Mitteilungen
- Personal/Personelles
- Materials Week
- Conferences/ Konferenzen