Abstract
The non-ideal behaviours of diffusion impedance observed in such intercalation electrodes as hydride-forming alloys and transition metal oxides were theoretically treated in terms of (i) the diffusion length distribution, (ii) diffusion towards and from the fractal surface and (iii) diffusion coupled with the trapping reaction or the homogeneous reaction. Firstly, when the diffusion lengths were widely distributed across the electrode, the absolute value of the phase angle deviated positively from 45° in the high frequency range, and it deviated negatively from 90° in the low frequency range. Secondly, the ac-impedance spectrum for diffusion through the fractal electrode exhibited a power-law behaviour of frequency dispersion with the absolute phase angle between 45° and 90° in the high frequency range, depending on the fractal dimension of the electrode surface. Finally, an arc appeared in the Nyquist plot of the ac-impedance spectrum, in case diffusion was coupled with either the trapping reaction or the homogeneous reaction.
References
[1] C. Lim, S.-I. Pyun:Electrochim. Acta38 (1993) 2645.10.1016/0013-4686(93)85082-ASearch in Google Scholar
[2] T.-H. Yang, S.-I.Pyun:Electrochim. Acta41 (1996) 843.10.1016/0013-4686(95)00371-1Search in Google Scholar
[3] B.S. Haran, B.N. Popov, R.E. White:J. Power Sources75 (1998)56.10.1016/S0378-7753(98)00092-5Search in Google Scholar
[4] A. Lasia, in:B.E. Conway, R.E. White (Ed.), Modern Aspects of Electrochemistry, Vol. 35, Kluwer Academic/Plenum Publishers, New York (2002) 1.10.1007/0-306-47604-5_1Search in Google Scholar
[5] S.-I. Pyun, J.-S.Bae:Electrochim. Acta41 (1996) 919.10.1016/0013-4686(95)00386-XSearch in Google Scholar
[6] M. Doyle, J.P. Meyers, J. Newman:J. Electrochem. Soc. 147(2000) 99.10.1149/1.1393162Search in Google Scholar
[7] Z. Lu, M.D. Levi, G. Salitra, Y. Gofer, E. Levi, D. Aurbach:J.Electroanal. Chem.491 (2000) 221.10.1016/S0022-0728(00)00184-4Search in Google Scholar
[8] A.-K. Hjelm, G. Lindbergh:Electrochim. Acta47 (2002) 1747.10.1016/S0013-4686(02)00008-7Search in Google Scholar
[9] C. Ho, I.D. Raistrick, R.A. Huggins:J. Electrochem. Soc. 127 (1980) 343.10.1149/1.2129668Search in Google Scholar
[10] L.O. Valøen, S. Sunde, R. Tunold:J. Alloys Compd. 253–254(1997) 656.10.1016/S0925-8388(96)02913-1Search in Google Scholar
[11] A. Lundqvist, G. Lindbergh:Electrochim. Acta44 (1999) 2523.10.1016/S0013-4686(98)00380-6Search in Google Scholar
[12] F. Fabregat-Santiago, G. Garcia-Belmonte, J. Bisquert, N.S. Ferriols, P.R. Bueno, E. Longo, J.S. Antón, S. Castro-García:J. Electrochem. Soc. 148 (2001) E302.10.1149/1.1377286Search in Google Scholar
[13] L.O. Valøen, A. Lasia, J.O. Jensen, R. Tunold:Electrochim. Acta47 (2002) 2871.10.1016/S0013-4686(02)00143-3Search in Google Scholar
[14] T. Jacobsen, K. West:Electrochim. Acta40 (1995) 255.10.1016/0013-4686(94)E0192-3Search in Google Scholar
[15] S. Ding, W.T. Petuskey:Solid State Ionics109 (1998) 101.10.1016/S0167-2738(98)00103-9Search in Google Scholar
[16] A. Lasia, in:B.E. Conway, J.O’M. Bockris, R.E. White (Ed.), Modern Aspects of Electrochemistry, Vol. 32, Kluwer Academic/ Plenum Publishers, New York (1999) 143.10.1007/0-306-46916-2_2Search in Google Scholar
[17] J.-P. Diard, B. Le Gorrec, C. Montella:J. Electroanal. Chem.471(1999) 126.10.1016/S0022-0728(99)00262-4Search in Google Scholar
[18] J. Bisquert, A. Compte:J. Electroanal. Chem.499 (2001) 112.10.1016/S0022-0728(00)00497-6Search in Google Scholar
[19] W. Weppner, R.A. Huggins:J. Electrochem. Soc. 124 (1977)1569.10.1149/1.2133112Search in Google Scholar
[20] J.R. Macdonald:Impedance Spectroscopy, Wiley, New York(1987).Search in Google Scholar
[21] J.-P. Diard, B. Le Gorrec, C. Montella:J. Electroanal. Chem.499(2001) 67.10.1016/S0022-0728(00)00479-4Search in Google Scholar
[22] H.-K. Song, Y.-H.Jung, K.-H. Lee, Le H. Dao:Electrochim. Acta44 (1999) 3513.10.1016/S0013-4686(99)00121-8Search in Google Scholar
[23] H.-K. Song, H.-Y.Hwang, K.-H. Lee, Le H. Dao:Electrochim.Acta45 (2000) 2241.10.1016/S0013-4686(99)00436-3Search in Google Scholar
[24] G.-J. Lee, S.-I.Pyun, C.-H.Kim:J. Solid State Electrochem. 8(2004) 110.10.1007/s10008-003-0392-xSearch in Google Scholar
[25] T. Pajkossy:J. Electroanal. Chem.300 (1991) 1.10.1016/0022-0728(91)85379-4Search in Google Scholar
[26] T. Pajkossy, A.P. Borosy, A. Imre, S.A. Martemyanov, G. Nagy,R. Schiller, L. Nyikos:J. Electroanal. Chem.366 (1994)69.10.1016/0022-0728(93)03053-RSearch in Google Scholar
[27] A. Le Mehaute, G. Crepy:Solid State Ionics9–10 (1983) 17.10.1016/0167-2738(83)90207-2Search in Google Scholar
[28] Y. Dassas, P. Duby:J. Electrochem. Soc. 142 (1995) 4175.10.1149/1.2048481Search in Google Scholar
[29] J.-W. Lee, S.-I.Pyun:Electrochim. Acta, in press (2005).Search in Google Scholar
[30] J.-Y. Go, S.-I. Pyun:Electrochim. Acta, in press (2005).Search in Google Scholar
[31] A. McNabb, P.K. Foster:Trans. Metall. Soc. AIME227 (1963)618.Search in Google Scholar
[32] M. Iino:Acta Metall. 30 (1982) 367.10.1016/0001-6160(82)90216-4Search in Google Scholar
[33] S.-I. Pyun, T.-H.Yang:J. Electroanal. Chem.441 (1998) 183.10.1016/S0022-0728(97)00436-1Search in Google Scholar
[34] J.-P. Diard, C. Montella:J. Electroanal. Chem.557 (2003) 19.10.1016/S0022-0728(03)00346-2Search in Google Scholar
[35] S.-B. Lee, S.-I.Pyun:Electrochim. Acta48 (2002) 419.10.1016/S0013-4686(02)00687-4Search in Google Scholar
[36] S.-B. Lee, S.-I.Pyun:J. Solid State Electrochem. 7 (2003) 374.10.1007/s10008-002-0343-ySearch in Google Scholar
[37] D.R. Franceschetti:J. Electroanal. Chem.178 (1984) 1.10.1016/S0022-0728(84)80018-2Search in Google Scholar
[38] J. Bisquert:Electrochim. Acta47 (2002) 2435.10.1016/S0013-4686(02)00102-0Search in Google Scholar
[39] J. Bisquert, V.S. Vikhrenko:Electrochim. Acta47 (2002) 3977.10.1016/S0013-4686(02)00372-9Search in Google Scholar
[40] J. Bisquert, G. Garcia-Belmonte, Á. Pitarch:Chem Phys4 (2003)287.Search in Google Scholar
[41] O. Bohnke, M. Rezrazi, B. Vuillemin, C. Bohnke, P.A. Gillet,C. Rousselot:Solar Energy Mat. Solar Cells25 (1992) 361.10.1016/0927-0248(92)90080-9Search in Google Scholar
[42] B. Vuillemin, O. Bohnke:Solid State Ionics68 (1994) 257.10.1016/0167-2738(94)90184-8Search in Google Scholar
© 2005 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Solute drag illustrated graphically
- Dopant effect on high-temperature plastic flow behavior and grain boundary chemistry in oxide ceramics
- Anomalous behaviour in diffusion impedance of intercalation electrodes
- A simple model of fully-faceted grain growth and coarsening with non-linear growth laws
- Thermal conductivity of functionally graded Fe–Cu–C alloy processed by liquid phase sintering and carburization
- Microstructure development during liquid-phase sintering
- The mechanical properties of a joint of Sn-3.5Ag-1Zn solder and Cu substrate with aging treatment
- Three-dimensional morphological characterization of coarsened microstructures
- Faceting and migration of twin grain boundaries in zinc
- Effect of external electric field on the microstructural evolution of La2O3-doped BaTiO3 ceramics
- Hardness and fracture toughness of ultra-fine WC-10Co-X cemented carbides prepared from nanocrystalline powders
- Systematic study of grain boundary atomistic structures and related properties in cubic zirconia bicrystals
- Spontaneous generation of charged atoms or clusters during thermal evaporation of silver
- The influence of singular surfaces and morphological changes on coarsening
- Electrical activity of grain boundaries in polycrystalline silicon – influences of grain boundary structure, chemistry and temperature
- Changes in the distribution of interfaces in PMN-35 mol% PT as a function of time
- Study of the effect of heat treatment on a Pt–Co thin film by Monte Carlo simulations coupled with a modified embedded atom method
- The influence of misorientation deviation on the faceting of Σ3 grain boundaries in aluminium
- Notifications/Mitteilungen
- Personal/Personelles
- Materials Week
- Conferences/ Konferenzen
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Solute drag illustrated graphically
- Dopant effect on high-temperature plastic flow behavior and grain boundary chemistry in oxide ceramics
- Anomalous behaviour in diffusion impedance of intercalation electrodes
- A simple model of fully-faceted grain growth and coarsening with non-linear growth laws
- Thermal conductivity of functionally graded Fe–Cu–C alloy processed by liquid phase sintering and carburization
- Microstructure development during liquid-phase sintering
- The mechanical properties of a joint of Sn-3.5Ag-1Zn solder and Cu substrate with aging treatment
- Three-dimensional morphological characterization of coarsened microstructures
- Faceting and migration of twin grain boundaries in zinc
- Effect of external electric field on the microstructural evolution of La2O3-doped BaTiO3 ceramics
- Hardness and fracture toughness of ultra-fine WC-10Co-X cemented carbides prepared from nanocrystalline powders
- Systematic study of grain boundary atomistic structures and related properties in cubic zirconia bicrystals
- Spontaneous generation of charged atoms or clusters during thermal evaporation of silver
- The influence of singular surfaces and morphological changes on coarsening
- Electrical activity of grain boundaries in polycrystalline silicon – influences of grain boundary structure, chemistry and temperature
- Changes in the distribution of interfaces in PMN-35 mol% PT as a function of time
- Study of the effect of heat treatment on a Pt–Co thin film by Monte Carlo simulations coupled with a modified embedded atom method
- The influence of misorientation deviation on the faceting of Σ3 grain boundaries in aluminium
- Notifications/Mitteilungen
- Personal/Personelles
- Materials Week
- Conferences/ Konferenzen