Home A simple model of fully-faceted grain growth and coarsening with non-linear growth laws
Article
Licensed
Unlicensed Requires Authentication

A simple model of fully-faceted grain growth and coarsening with non-linear growth laws

  • Catherine M. Bishop , Raphaelle L. Satet , Rowland M. Cannon , W. Craig Carter and Andrew R. Roosen
Published/Copyright: January 22, 2022
Become an author with De Gruyter Brill

Abstract

A numerical simulation of the growth and coarsening of completely faceted particles in a two-dimensional closed system is described. The particles grow from a supersaturated solution with driving forces including an anisotropic-Gibbs–Thompson effect. Linear and non-linear growth laws were incorporated. This allows comparison to data obtained from physical experiments of Si3N4 growing from a glass matrix with additions of various rare earths (La, Y, Lu) where particle growth is more or less anisotropic (depending on the particular rare earth dopant). Simulations explore the ranges of kinetic parameters for which particle shapes tend to be dictated by thermodynamic and/or kinetic anisotropy. Comparison to data taken from a series of experiments indicates that La probably has a non-linear growth effect whereas Lu is less so.


Dr. Catherine M. Bishop Department of Materials Parks Road, Oxford, OX2 3PH, UK Tel.: +44 1865 273 672 Fax: +44 1865 283 333

Dedicated to Professor Dr. Duk Yong Yoon on the occasion of his 65th birthday


References

[1] G. Petzow, M. Herrmann: High Performance Non-Oxide Ceramics II Structure and Bonding 102 (2002) 47.10.1007/3-540-45623-6_2Search in Google Scholar

[2] P. Sajgalik, J. Dusza, M.J. Hoffmann: J. Am. Ceram. Soc. 78 (1995) 2619.10.1111/j.1151-2916.1995.tb08031.xSearch in Google Scholar

[3] P.F. Becher, E.R. Fuller, P. Angelini: J. Am. Ceram. Soc. 74 (1991) 2131.10.1111/j.1151-2916.1991.tb08271.xSearch in Google Scholar

[4] P.F. Becher, E.Y. Sun, K.P. Plucknett, K.B. Alexander, C.-H. Hsueh, H.-T. Lin, S.B. Waters, C.G. Westmoreland, E.-S. Kang, K. Hirao, M.E. Brito: J. Am. Ceram. Soc. 81 (1998) 2821.10.1111/j.1151-2916.1998.tb02702.xSearch in Google Scholar

[5] T. Ohji, K. Hirao, S. Kanzaki: J. Am. Ceram. Soc. 78 (1995) 3125.10.1111/j.1151-2916.1995.tb09095.xSearch in Google Scholar

[6] C.-M. Wang, X. Pan, M.J. Hoffmann, R.M. Cannon, M. Rühle: J. Am. Ceram. Soc. 79 (1996) 788.10.1111/j.1151-2916.1996.tb07946.xSearch in Google Scholar

[7] M.J. Hoffmann, H. Gu, R.M. Cannon: Mater. Res. Soc. Symp. Proc. 586 (2000) 65.10.1557/PROC-586-65Search in Google Scholar

[8] N. Shibata, S.J. Pennycook, T.R. Gosnell, G.S. Painter, W.A. Shelton, P.R. Becher: Nature 428 (2004) 730. 10.1038/nature02410Search in Google Scholar

[9] Y. Goto, G. Thomas: Acta Metall. Mater. 43 (1995) 923.10.1016/0956-7151(94)00298-VSearch in Google Scholar

[10] R.L. Satet, M.J. Hoffmann: J. Eur. Ceram. Soc. 24 (2004) 3437.10.1016/j.jeurceramsoc.2003.10.034Search in Google Scholar

[11] L.-L. Wang, T.-Y. Tien, I.-W. Chen: J. Am. Ceram. Soc. 81 (1998) 2677.10.1111/j.1151-2916.1998.tb02676.xSearch in Google Scholar

[12] S.-J.L. Kang, S.-M. Han: Mater. Res. Bull. 20 (1995) 33.10.1557/S0883769400049198Search in Google Scholar

[13] N.P. Padture: J. Am. Ceram. Soc. 77 (1994) 519.10.1111/j.1151-2916.1994.tb07024.xSearch in Google Scholar

[14] S.K. Lee, C.H. Kim: J. Am. Ceram. Soc. 77 (1994) 1955.Search in Google Scholar

[15] W.J. MoberlyChan, J.J. Cao, L.C. De-Jonghe: Acta Mater. 46 (1998) 1625.10.1016/S1359-6454(97)00343-1Search in Google Scholar

[16] X.-F. Zhang, Q. Yang, L.C. De-Jonghe: Acta Mater. 51 (2003) 3849.10.1016/S1359-6454(03)00209-XSearch in Google Scholar

[17] H. Song, R.L. Coble: J. Am. Ceram. Soc. 73 (1990) 2086.10.1111/j.1151-2916.1990.tb05272.xSearch in Google Scholar

[18] D.S. Horn, G.L. Messing: Mater. Sci. Eng. A 195 (1995) 169.10.1016/0921-5093(94)06516-0Search in Google Scholar

[19] M.M. Seabaugh, E. Suvaci, B. Brahmaroutu, G.L. Messing: Interface Science 8 (2002) 257.10.1023/A:1008716303645Search in Google Scholar

[20] M.-K. Kang, Y.-S. Yoo, D.-Y. Kim, N.M. Hwang: J. Am. Ceram. Soc. 83 (2000) 385.10.1111/j.1151-2916.2000.tb01201.xSearch in Google Scholar

[21] B.K. Lee, S.Y. Chung, S.-J.L. Kang: Acta Mater. 48 (2000) 1575.10.1016/S1359-6454(99)00434-6Search in Google Scholar

[22] S.J. Bennison, M.P. Harmer: Ceram. Trans. 7 (1990) 13.Search in Google Scholar

[23] K.L. Gavrilov, S.J. Bennison, K.R. Mikeska, R. Levi-Setti: Acta Mater. 47 (1999) 4031.10.1016/S1359-6454(99)00263-3Search in Google Scholar

[24] S.-H. Lee, D.-Y. Kim, N.M. Hwang: J. Eur. Ceram. Soc. 22 (2002) 317.10.1016/S0955-2219(01)00281-3Search in Google Scholar

[25] B.K. Kim, S.-H. Hong, S.-H. Lee, D.-Y. Kim, N.M. Hwang: J. Am. Ceram. Soc. 86 (2003) 634.10.1111/j.1151-2916.2003.tb03351.xSearch in Google Scholar

[26] I. MacLaren, R.M. Cannon, M.A. Gülgün, R. Voytovych, N. Popescu-Pogrion, C. Scheu, U. Täffner, M. Rühle: J. Am. Ceram. Soc. 86 (2003) 650.10.1111/j.1151-2916.2003.tb03354.xSearch in Google Scholar

[27] C. Scott, M. Kaliszewski, C. Greskovich, L. Levinson: J. Am. Ceram. Soc. 85 (2002) 1275.10.1111/j.1151-2916.2002.tb00257.xSearch in Google Scholar

[28] M. Kramer, M.J. Hoffmann, G. Petzow: J. Am. Ceram. Soc. 76 (1993) 2778.10.1111/j.1151-2916.1993.tb04015.xSearch in Google Scholar

[29] R.L. Satet, M.J. Hoffmann, C.M. Bishop, W.C. Carter, R.M. Cannon, A.R. Roosen: in preparation (2004).Search in Google Scholar

[30] I.M. Lifshitz, V.V. Slyozov: J. Phys. Chem. Solids 19 (1961) 35.10.1016/0022-3697(61)90054-3Search in Google Scholar

[31] C. Wagner: Z. Elektrochem. 65 (1961) 581.Search in Google Scholar

[32] A.J. Ardell: J. Eur. Ceram. Soc. 19 (1999) 2217.10.1016/S0955-2219(99)00094-1Search in Google Scholar

[33] J. Alkemper, V.A. Snyder, N. Akaiwa, P.W. Voorhees: Phys. Rev. Lett. 82 (1999) 2725.10.1103/PhysRevLett.82.2725Search in Google Scholar

[34] J.-R. Lai, Y.-Y. Tien: J. Am. Ceram. Soc. 76 (1993) 91.10.1111/j.1151-2916.1993.tb03693.xSearch in Google Scholar

[35] M. Kitayama, K. Hirao, M. Toriyama, S. Kanzaki: J. Am. Ceram. Soc. 46 (1998) 6541. Search in Google Scholar

[36] M.F. Yan, R.M. Cannon, H.K. Bowen, U. Chowdhry: Mater. Sci. Eng. 60 (1983) 275. 10.1016/0025-5416(83)90012-5Search in Google Scholar

[37] D.J. Srolovitz, G.S. Grest, M.P. Anderson: Acta Metall. 33 (1985) 2233. 10.1016/0001-6160(85)90185-3Search in Google Scholar

[38] C.V. Thompson, H.J. Frost, F. Spaepen: Acta Metall. 35 (1987) 887. 27 10.1016/0001-6160(87)90166-0Search in Google Scholar

[39] C.W. Park, D.Y. Yoon: Ceram. Trans. 118 (2000) 127. Search in Google Scholar

[40] A.R. Roosen, W.C. Carter: Physica A 261 (1998) 232. 10.1016/S0378-4371(98)00377-XSearch in Google Scholar

[41] J.W. Martin, R.D. Doherty, B. Cantor: Stability of Microstructures in Metallic Systems, Cambridge University Press, New York (1997). 10.1017/CBO9780511623134Search in Google Scholar

[42] W.K. Burton, N. Cabrera, F.C. Frank: Philosophical Transactions of the Royal Society of London, Series A 243 (1951) 299. 10.1098/rsta.1951.0006Search in Google Scholar

[43] Y.J. Park, N.M. Hwang, D.Y. Yoon: Metall. Mater. Trans. A 27 (1996) 2809. 10.1007/BF02652373Search in Google Scholar

[44] G.S. Rohrer, C.L. Rohrer, W.W. Mullins: J. Am. Ceram. Soc. 85 (2002) 675. 10.1111/j.1151-2916.2002.tb00149.xSearch in Google Scholar

[45] A.R. Roosen, J.E. Taylor: Materials Research Society Proceedings 237 (1992) 25. 10.1557/PROC-237-25Search in Google Scholar

[46] W.C. Carter, A.R. Roosen, J.W. Cahn, J.E. Taylor: Acta. Metall. 43 (1995) 4309. 10.1016/0956-7151(95)00134-HSearch in Google Scholar

[47] J.E. Taylor: Acta Mater. 40 (1992) 1475. 10.1016/0956-7151(92)90091-RSearch in Google Scholar

[48] M. Döblinger: unpublished research (2004). Search in Google Scholar

[49] G.B. Winkelman, C. Dwyer, T.S. Hudson, D. Nguyen-Manh, M. Doblinger, R.L. Satet, M.J. Hoffmann, D.J.H. Cockayne: submitted to Phys. Rev. Lett. (2004).Search in Google Scholar

Received: 2004-10-05
Accepted: 2004-10-28
Published Online: 2022-01-22

© 2005 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Solute drag illustrated graphically
  6. Dopant effect on high-temperature plastic flow behavior and grain boundary chemistry in oxide ceramics
  7. Anomalous behaviour in diffusion impedance of intercalation electrodes
  8. A simple model of fully-faceted grain growth and coarsening with non-linear growth laws
  9. Thermal conductivity of functionally graded Fe–Cu–C alloy processed by liquid phase sintering and carburization
  10. Microstructure development during liquid-phase sintering
  11. The mechanical properties of a joint of Sn-3.5Ag-1Zn solder and Cu substrate with aging treatment
  12. Three-dimensional morphological characterization of coarsened microstructures
  13. Faceting and migration of twin grain boundaries in zinc
  14. Effect of external electric field on the microstructural evolution of La2O3-doped BaTiO3 ceramics
  15. Hardness and fracture toughness of ultra-fine WC-10Co-X cemented carbides prepared from nanocrystalline powders
  16. Systematic study of grain boundary atomistic structures and related properties in cubic zirconia bicrystals
  17. Spontaneous generation of charged atoms or clusters during thermal evaporation of silver
  18. The influence of singular surfaces and morphological changes on coarsening
  19. Electrical activity of grain boundaries in polycrystalline silicon – influences of grain boundary structure, chemistry and temperature
  20. Changes in the distribution of interfaces in PMN-35 mol% PT as a function of time
  21. Study of the effect of heat treatment on a Pt–Co thin film by Monte Carlo simulations coupled with a modified embedded atom method
  22. The influence of misorientation deviation on the faceting of Σ3 grain boundaries in aluminium
  23. Notifications/Mitteilungen
  24. Personal/Personelles
  25. Materials Week
  26. Conferences/ Konferenzen
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2005-0023/html
Scroll to top button