Home Electrical activity of grain boundaries in polycrystalline silicon – influences of grain boundary structure, chemistry and temperature
Article
Licensed
Unlicensed Requires Authentication

Electrical activity of grain boundaries in polycrystalline silicon – influences of grain boundary structure, chemistry and temperature

  • Sadahiro Tsurekawa EMAIL logo , Kota Kido , Shu Hamada , Tadao Watanabe and Takashi Sekiguchi
Published/Copyright: January 22, 2022
Become an author with De Gruyter Brill

Abstract

Polycrystalline silicon is extensively used in modern technology like solar-cells and thin film transistors. Towards the development of high performance devices based on polycrystalline materials, it is essential to design and control grain boundary microstructures. This article gives an overview of our recent experimental studies on electrical properties of grain boundaries in polycrystalline silicon. Particular attention is paid to the influences of the grain boundary character/structure, chemistry (hydrogenation and oxidation) and temperature on the electrical activity of individual grain boundaries. The electron beam induced current (EBIC) technique was used to observe electrical activity of grain boundaries. The observed results are discussed based on the Shockley-Read-Hall statistic.


Prof. Sadahiro Tsurekawa Laboratory of Materials Design & Interface Engineering Dept. of Nanomechanics, Graduate School of Engineering Tohoku University Sendai 980-8579 Sendai, Japan Tel./Fax: +81 22 217 6904

Dedicated to Professor Dr. Duk Yong Yoon on the occasion of his 65th birthday


References

[1] G. Poullain, A. Bary, B. Mercey, P. Lay, J.-L. Chermant, G. Nouet: Proc. of JIMS-4, Trans. Jpn. Inst. Met. Suppl. 27 (1986) 1069.Search in Google Scholar

[2] A. Buis, Y.-S. Oei, F.W. Schapink: Proc. of JIMS-4, Trans. Jpn. Inst. Met. Suppl. 27 (1986) 221.Search in Google Scholar

[3] M. Aucouturier, A. Broniatowski, A. Chari, J.L. Maurice: Springer Proceedings in Physics 35 (1989) 64.10.1007/978-3-642-93413-1_9Search in Google Scholar

[4] N. Tabet, C. Monty: Phil. Mag B 57 (1988) 763.10.1080/13642818808208492Search in Google Scholar

[5] R. Rizk, G. Nouet: Interface Sci. 4 (1997) 303.10.1007/BF00240249Search in Google Scholar

[6] Z.J. Wang, S. Tsurekawa, K. Ikeda, T. Sekiguchi, T. Watanabe: Interface Sci. 7 (1999) 197.10.1023/A:1008796005240Search in Google Scholar

[7] A. Fedotov, B. Evtodyi, L. Fionova, Yu. Ilyashuk, E. Katz, L. Polyak: phys. stat. sol. (a) 119 (1990) 523.10.1002/pssa.2211190215Search in Google Scholar

[8] A. Fedotov, B. Evtodyi, L. Fionova, Yu. Ilyashuk, E. Katz, L. Polyak: J. Crystal Growth 104 (1990) 186.10.1016/0022-0248(90)90330-NSearch in Google Scholar

[9] J.-L. Maurice: Revue Phys. Appl. 22 (1987) 613.10.1051/rphysap:01987002207061300Search in Google Scholar

[10] D.S. Ginley, D.M. Haaland: Appl. Phys. Lett. 39 (1981) 271.10.1063/1.92669Search in Google Scholar

[11] C.H. Seager, D.S. Ginley: J. Appl. Phys. 52 (1981) 1050.10.1063/1.328802Search in Google Scholar

[12] H.E. Elgamel, A.M. Barnett, A. Rohatgi, Z. Chen, C. Vinckier, J. Nijs, R. Mertens: J. Appl. Phys. 78 (1995) 3457.10.1063/1.359977Search in Google Scholar

[13] R. Einhaus, F. Duerinckx, E. Van Kerschaver, J. Szlufcik, F. Durand, P.J. Ribeyron, J.C. Duby, D. Sarti, G. Goaer, G.N. Le, I. Périchaud, L. Clerc, S. Martinuzzi: Mater. Sci. Eng. B 58 (1999) 81.10.1016/S0921-5107(98)00286-4Search in Google Scholar

[14] T. Watanabe, S. Kitamura, S. Karashima: Acta metall. 28 (1980) 455.10.1016/0001-6160(80)90135-2Search in Google Scholar

[15] P. Lejcek, S. Hofmann: Crit. Rev. Sol. State Mater. Sci. 20 (1995) 1.10.1080/10408439508243544Search in Google Scholar

[16] S. Kusanagi, T. Sekiguchi, B. Shen, K. Sumino: Mater. Sci. Tech. 11 (1995) 685.10.1080/17432847.1995.11945564Search in Google Scholar

[17] B. Shen, S. Kusanagi, J. Jablonski, K.Sumino: J. Appl. Phys. 76 (1994) 4540.10.1063/1.357285Search in Google Scholar

[18] Z.J. Radzinski, T.Q. Zhou, A. Buczkowski, G.A. Rozonyi, D. Flinn, L.G. Hellwig, J.A. Ross: Appl. Phys. Lett. 60 (1992) 1096.10.1063/1.106455Search in Google Scholar

[19] T. Sekiguchi, K. Sumino: Rev. Sci. Instrum. 66 (1995) 4277.10.1063/1.1145382Search in Google Scholar

[20] V. Randle: The Measurement of Grain Boundary Geometry, Institute of Physics Publishing, Bristol and Philadelphia, (1993) 86.Search in Google Scholar

[21] A.V. Andreyeva G.I. Salnikov, L.K. Fionova: Acta Metall. 26 (1978) 1331.10.1016/0001-6160(78)90148-7Search in Google Scholar

[22] W. Shockley, W.T. Read, Jr.: Phys. Rev. 87 (1952) 835.10.1103/PhysRev.87.835Search in Google Scholar

[23] R.N. Hall: Phys. Rev. 87 (1952) 387.10.1103/PhysRev.87.387Search in Google Scholar

[24] S. Hamada, K. Kawahara, S. Tsurekawa, T. Watanabe, T. Sekiguchi: MRS Conference Proc. 586 (2000) 163.10.1557/PROC-586-163Search in Google Scholar

[25] K. Kido: Master Thesis, Tohoku Univ. (2004).Search in Google Scholar

[26] G.C. Perreault, S.L. Hyland, D.G. Ast: Phil. Mag. A 64 (1991) 587.10.1080/01418619108204861Search in Google Scholar

[27] K. Ikeda, T. Sakaguchi, S. Ito, M. Takebe, M. Suezawa: J. Cryst. Growth 20 (2000) 90.10.1016/S0022-0248(99)00653-3Search in Google Scholar

[28] C. Donolato: Optik 52 (1979) 19.Search in Google Scholar

[29] S. Kusanagi: Ph. D. Thesis, Tohoku Univ. (1994).Search in Google Scholar

[30] C. Donolato: J. Appl. Phys 54 (1983) 1314.10.1063/1.332205Search in Google Scholar

[31] S. Tsurekawa, S. Hamada, M. Shibata, K. Kawahara, T. Wata-nabe, T. Sekiguchi: Ann. Chim. Sci. Mat. 27 Suppl 1 (2002) S255.Search in Google Scholar

[32] A.L. Fahrenbruch, R.H. Bube: Fundamental of Solar Cells, Academic Press, New York, (1983).Search in Google Scholar

[33] A. von Grün: Zeitschrift für Naturforschung A 12 (1957) 89.10.1515/zna-1957-0201Search in Google Scholar

[34] K. Tanaka, M. Kohyama: Phil. Mag. A 82 (2002) 215.10.1080/13642819108205949Search in Google Scholar

[35] D. Jousse, S.L. Delage, S.S. Iyer: Phil. Mag. B 63 (1991) 443.10.1080/13642819108205949Search in Google Scholar

[36] M. Kohyama, R. Yamamoto: Phys. Rev. 50 (1994) 8502.10.1103/PhysRevB.50.8502Search in Google Scholar

[37] S. Tsurekawa, S. Hamada, K. Kawahara, T. Watanabe, T. Sekiguchi: Proc. of Intern. Workshop on Fundamental Study and Application of Intelligent Nano and Mesoscopic Structured Materials by Field Control, ed. S. Chonan et al. (2000) 115.Search in Google Scholar

[38] I. Herbeuval, M. Biscondi: C. A. Acad. Sci. Paris, C273 (1971) 1416.Search in Google Scholar

[39] R. Hoffman: Acta metall., 4 (1956) 97.10.1016/0001-6160(56)90120-1Search in Google Scholar

[40] M. Koizuka, H. Yamada-Kaneta: J. Appl. Phys 84 (1998) 4255.10.1063/1.368642Search in Google Scholar

[41] M. Kohyama: Mater. Sci. Forum 207 – 209 (1996) 265.10.4028/www.scientific.net/MSF.207-209.265Search in Google Scholar

Received: 2004-08-24
Accepted: 2004-11-09
Published Online: 2022-01-22

© 2005 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Solute drag illustrated graphically
  6. Dopant effect on high-temperature plastic flow behavior and grain boundary chemistry in oxide ceramics
  7. Anomalous behaviour in diffusion impedance of intercalation electrodes
  8. A simple model of fully-faceted grain growth and coarsening with non-linear growth laws
  9. Thermal conductivity of functionally graded Fe–Cu–C alloy processed by liquid phase sintering and carburization
  10. Microstructure development during liquid-phase sintering
  11. The mechanical properties of a joint of Sn-3.5Ag-1Zn solder and Cu substrate with aging treatment
  12. Three-dimensional morphological characterization of coarsened microstructures
  13. Faceting and migration of twin grain boundaries in zinc
  14. Effect of external electric field on the microstructural evolution of La2O3-doped BaTiO3 ceramics
  15. Hardness and fracture toughness of ultra-fine WC-10Co-X cemented carbides prepared from nanocrystalline powders
  16. Systematic study of grain boundary atomistic structures and related properties in cubic zirconia bicrystals
  17. Spontaneous generation of charged atoms or clusters during thermal evaporation of silver
  18. The influence of singular surfaces and morphological changes on coarsening
  19. Electrical activity of grain boundaries in polycrystalline silicon – influences of grain boundary structure, chemistry and temperature
  20. Changes in the distribution of interfaces in PMN-35 mol% PT as a function of time
  21. Study of the effect of heat treatment on a Pt–Co thin film by Monte Carlo simulations coupled with a modified embedded atom method
  22. The influence of misorientation deviation on the faceting of Σ3 grain boundaries in aluminium
  23. Notifications/Mitteilungen
  24. Personal/Personelles
  25. Materials Week
  26. Conferences/ Konferenzen
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2005-0034/html
Scroll to top button