Home Dopant effect on high-temperature plastic flow behavior and grain boundary chemistry in oxide ceramics
Article
Licensed
Unlicensed Requires Authentication

Dopant effect on high-temperature plastic flow behavior and grain boundary chemistry in oxide ceramics

  • Hidehiro Yoshida EMAIL logo , Yuichi Ikuhara and Taketo Sakuma
Published/Copyright: January 22, 2022
Become an author with De Gruyter Brill

Abstract

The grain boundaries in high-purity oxide ceramics, such as Al2O3 and TZP, are often free from glass phase, and the high-temperature plastic flow or grain boundary failure is sensitive to small levels of doping by various cations. For example, the high-temperature creep strain rate in finegrained, polycrystalline Al2O3 is highly retarded by 0.1 mol% Lu3+ or Zr4+-doping. The elongation to failure in superplastic TZP is improved by 0.2–3 mol% Ge4+-doping. Such a dopant effect is attributed to changes of the grain boundary diffusion due to the segregation of dopant cation along the grain boundaries. Quantitative analysis on the atomic structure and chemical bonding state along the grain boundaries by high-resolution electron microscopy, energy-dispersive X-ray spectroscopy, electron energy-loss spectroscopy and molecular orbital calculations will provide theoretical guiding principles to design high-performance oxide ceramics in the near future.


Dr. Eng. Hidehiro Yoshida National Institute for Materials Science 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 Japan Tel.: +81 29 859 2471 Fax: +81 29 859 2501

Dedicated to Professor Dr. Duk Yong Yoon on the occasion of his 65th birthday


References

[1] H.-J. Kleebe, M.K. Cinibulk, I. Tanaka, J. Bruley, R.M. Cannon, D.R. Clarke, M.J. Hoffmann, M. Rühle: MRS Symposium Proceedings, Vol. 287, Silicon Nitride Ceramics, MRS (1993) 65.10.1557/PROC-287-65Search in Google Scholar

[2] H. Yoshida, K. Okada, Y. Ikuhara, T. Sakuma: Phil. Mag. Lett. 76 (1997) 9.10.1080/095008397179327Search in Google Scholar

[3] Y. Ikuhara, P. Thavorniti, T. Sakuma: Acta Mater. 45 (1997) 5275.10.1016/S1359-6454(97)00152-3Search in Google Scholar

[4] E. Arzt, M.F. Ashby, K.E. Easterling: Metall. Trans. A 14 (1983) 211.10.1007/BF02651618Search in Google Scholar

[5] R.L. Coble, H. Song, R.J. Brook, C.A. Handwerker, J.M. Dynys, in: W.D. Kingery (Ed.), Advances in Ceramics, Vol. 10, Am. Ceram. Soc. (1984) 839.Search in Google Scholar

[6] R.S. Gordon, in: W.D. Kingery (Ed.), Advances in Ceramics, Vol. 10, Am. Ceram. Soc. (1984) 418.Search in Google Scholar

[7] H.J. Frost, M.F. Ashby: Deformation-Mechanism Maps, Pergamon, Oxford (1982) 98.Search in Google Scholar

[8] R.M. Cannon, R.L. Coble, in: R.C. Bradt, R.E. Tressler (Eds.), Deformation of Ceramic Materials, Plenum Press (1974) 61.Search in Google Scholar

[9] A.H. Chokshi, T.G. Langdon: Mater. Sci. Tech. 7 (1991) 577.10.1179/mst.1991.7.7.577Search in Google Scholar

[10] W.R. Cannon, T.G. Langdon: J. Mater. Sci. 18 (1983) 1.10.1007/BF00543808Search in Google Scholar

[11] J. Wang, R. Raj: J. Am. Ceram. Soc. 73 (1991) 1172.10.1111/j.1151-2916.1990.tb05175.xSearch in Google Scholar

[12] S. Lartigue, L. Priester, F. Dupau, P. Gruffel, C. Carry: Mater. Sci. Eng. A 164 (1993) 22.10.1016/0921-5093(93)90664-ZSearch in Google Scholar

[13] H. Yoshida, Y. Ikuhara, T. Sakuma: J. Mater. Res. 13 (1998) 2597.10.1557/JMR.1998.0362Search in Google Scholar

[14] J. Cho, C.M. Wang, H.M. Chan, J.M. Rickman, M.P. Harmer: Acta Mater. 47 (1999) 4197.10.1016/S1359-6454(99)00278-5Search in Google Scholar

[15] K. Kajihara, Y. Yoshizawa, T. Sakuma: Acta Metall. Mater. 43 (1995) 1121.Search in Google Scholar

[16] P. Thavorniti, Y. Ikuhara, T. Sakuma: J. Am. Ceram. Soc. 81 (1998) 2927.10.1111/j.1151-2916.1998.tb02715.xSearch in Google Scholar

[17] M. Jimenez-Melend, A. Dominguez-Rodoriguez, A. Bravo-Leon: J. Am. Ceram. Soc. 81 (1998) 2761.10.1111/j.1151-2916.1998.tb02695.xSearch in Google Scholar

[18] J. Mimurada, M. Nakano, K. Sasaki, Y. Ikuhara, T. Sakuma: J.Am. Ceram. Soc. 84 (2001) 1817.10.1111/j.1151-2916.2001.tb00920.xSearch in Google Scholar

[19] K. Nakatani, H. Nagayama, H. Yoshida, T. Yamamoto, T. Sakuma: Scripta Mater. 49 (2003) 791.10.1016/S1359-6462(03)00408-1Search in Google Scholar

[20] D.B. Williams, C.B. Carter: Transmission Electron Microscopy, IV: Spectroscopy, Plenum Press, NY (1996) 599.10.1007/978-1-4757-2519-3Search in Google Scholar

[21] H. Adachi, M. Tsukada, C. Satoko: J. Phys. Soc. Jpn. 45 (1978) 875.10.1143/JPSJ.45.875Search in Google Scholar

[22] T.G. Langdon, F.A. Mohamed: J. Mater. Sci. 13 (1978) 473.10.1007/BF00541795Search in Google Scholar

[23] R.M. Cannon, W.H. Rhodes, A.H. Heuer: J. Am. Ceram. Soc. 63 (1980) 46.10.1111/j.1151-2916.1980.tb10648.xSearch in Google Scholar

[24] A.H. Chokshi: J. Mater. Sci., 25 (1990) 3221– 32 28.10.1007/BF00587678Search in Google Scholar

[25] F. Wakai, T. Iga, T. Nagano: J. Ceram. Soc. Jpn. 96 (1988) 1206.10.2109/jcersj.96.1206Search in Google Scholar

[26] K. Okada, Y. Yoshizawa, T. Sakuma, in: S. Hori, M. Tokizane,N. Furushiro (Eds.), Superplasticity in Advanced Materials, The Jpn. Soc. for Research on Superplasticity (1991) 227.Search in Google Scholar

[27] J. Wang, R. Raj: Acta metal. mater. 39 (1991) 2909.10.1016/0956-7151(91)90107-CSearch in Google Scholar

[28] H. Yoshida, Y. Ikuhara, T. Sakuma: Phil. Mag. Lett. 79 (1999) 249.10.1080/095008399177318Search in Google Scholar

[29] H. Yoshida, Y. Ikuhara, T. Sakuma: Acta Mater. 50 (2002) 2955.10.1016/S1359-6454(02)00122-2Search in Google Scholar

[30] H. Yoshida, T. Yamamoto, T. Sakuma: J. Euro. Ceram. Soc. 23 (2003) 1795.10.1016/S0955-2219(03)00012-8Search in Google Scholar

[31] W. Swiatnicki, S. Lartigue-Korinek, J.Y. Laval: Acta metal. mater.43 (1995) 795.10.1016/0956-7151(94)00256-HSearch in Google Scholar

[32] T. Sakuma: Mater. Sci. Forum 304– 306 (1999) 3.10.4028/www.scientific.net/MSF.304-306.3Search in Google Scholar

[33] Y. Yoshizawa, T. Sakuma: Acta Mater. 40 (1992) 2943.10.1016/0956-7151(92)90458-QSearch in Google Scholar

[34] F. Wakai, S. Sakaguchi, Y. Matsumoto: Adv. Ceram. Mater. 1 (1986) 259.10.1111/j.1551-2916.1986.tb00026.xSearch in Google Scholar

[35] T.G. Nieh, J. Wadworth: Acta. Metall. Mater. 38 (1990) 1121.10.1016/0956-7151(90)90185-JSearch in Google Scholar

[36] I.-W. Chen, L.A. Xue: J. Am. Ceram. Soc. 73 (1990) 2585.10.1111/j.1151-2916.1990.tb06734.xSearch in Google Scholar

[37] Y. Ma, T.G. Langdon: Mater. Sci. Eng. A 168 (1993) 225.10.1016/0921-5093(93)90731-SSearch in Google Scholar

[38] A.H. Chokshi, A.K. Mukherjee, T.G. Langdon: Mater. Sci. Eng. R 10 (1993) 237.10.1016/0927-796X(93)90009-RSearch in Google Scholar

[39] K. Morita, K. Hiraga: Acta Mater. 50 (2002) 1075.10.1016/S1359-6454(01)00407-4Search in Google Scholar

[40] W.-J. Kim, J. Wolfenstine, O.D. Sherby: Acta metal. mater. 39 (1991) 199.10.1016/0956-7151(91)90268-6Search in Google Scholar

[41] H. Yoshida, Y. Ikuhara, T. Sakuma, M. Sakurai, E. Matsubara: Phil. Mag. 84 (2004) 865.10.1080/14786430310001638753Search in Google Scholar

[42] H. Yoshida, Y. Ikuhara, T. Sakuma: J. Inorganic Mater. 1 (1999) 229.10.1016/S1466-6049(99)00035-5Search in Google Scholar

[43] Y. Ikuhara, H. Yoshida, T. Sakuma: Mater. Sci. Eng., A 319– 321 (2001) 24.10.1016/S0921-5093(01)01035-8Search in Google Scholar

[44] H. Yoshida, T. Yamamoto, Y. Ikuhara, T. Sakuma: Phil. Mag. A 82 (2002) 511.Search in Google Scholar

[45] W.A. Harrison: Electronic Structure and the Properties of Solids. Dover Publications, NY (1980) 20.Search in Google Scholar

[46] F. Herman, S. Skillman: Atomic Structure Calculations. Prentice-Hall, NJ (1963) 3.10.1149/1.2426131Search in Google Scholar

[47] A. Kuwabara, M. Nakano, H. Yoshida, Y. Ikuhara, T. Sakuma: Acta Mater. 52 (2004) 5563.10.1016/j.actamat.2004.08.017Search in Google Scholar

[48] W.D. Kingery, H.K. Bowen, D.R. Uhlman: Introduction to Ceramics. John Wiley and Sons, NY (1976) 41.Search in Google Scholar

Received: 2004-07-26
Accepted: 2004-10-11
Published Online: 2022-01-22

© 2005 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Solute drag illustrated graphically
  6. Dopant effect on high-temperature plastic flow behavior and grain boundary chemistry in oxide ceramics
  7. Anomalous behaviour in diffusion impedance of intercalation electrodes
  8. A simple model of fully-faceted grain growth and coarsening with non-linear growth laws
  9. Thermal conductivity of functionally graded Fe–Cu–C alloy processed by liquid phase sintering and carburization
  10. Microstructure development during liquid-phase sintering
  11. The mechanical properties of a joint of Sn-3.5Ag-1Zn solder and Cu substrate with aging treatment
  12. Three-dimensional morphological characterization of coarsened microstructures
  13. Faceting and migration of twin grain boundaries in zinc
  14. Effect of external electric field on the microstructural evolution of La2O3-doped BaTiO3 ceramics
  15. Hardness and fracture toughness of ultra-fine WC-10Co-X cemented carbides prepared from nanocrystalline powders
  16. Systematic study of grain boundary atomistic structures and related properties in cubic zirconia bicrystals
  17. Spontaneous generation of charged atoms or clusters during thermal evaporation of silver
  18. The influence of singular surfaces and morphological changes on coarsening
  19. Electrical activity of grain boundaries in polycrystalline silicon – influences of grain boundary structure, chemistry and temperature
  20. Changes in the distribution of interfaces in PMN-35 mol% PT as a function of time
  21. Study of the effect of heat treatment on a Pt–Co thin film by Monte Carlo simulations coupled with a modified embedded atom method
  22. The influence of misorientation deviation on the faceting of Σ3 grain boundaries in aluminium
  23. Notifications/Mitteilungen
  24. Personal/Personelles
  25. Materials Week
  26. Conferences/ Konferenzen
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2005-0021/html
Scroll to top button