Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
-
Arturo Domínguez-Rodríguez
, Diego Gómez-García , Miguel Castillo-Rodríguez , Eugenio Zapata-Solvas and Rachman Chaim
Abstract
Superplasticity in ceramics has been the subject of intense research activity for the last two decades. Quite recently, the fabrication of fully dense nanocrystalline oxides with grain size below 100 nm enabled examination of their superplastic behaviour. This work presents a critical analysis of the plasticity of two important nanostructured oxide systems: MgO and yttria tetragonal zirconia polycrystals. A thorough comparison of their plastic deformation reveals that nano-structuring may be a necessary, but not a sufficient condition for superplasticity in ceramics as commonly assumed. Instead, the changes in the chemical composition and the transport properties, through the bulk and at grain boundaries, versus temperature and grain size can induce a rich variety of mechanical responses.
References
[1] F.Wakai, S.Sakaguchi, Y.Matsuno: Adv. Ceram. Mater.1 (1986) 259–263.10.1111/j.1551-2916.1986.tb00026.xSearch in Google Scholar
[2] B.N.Kim, K.Hiraga, K.Morita, Y.Sakka: Nature413 (2001) 288–291. 11565026; 10.1038/35095025Search in Google Scholar
[3] A.Domínguez-RodríguezD.Gómez-Garcí, E.Zapata, Z.Shen, R.Chaim: Scripta Mater.56 (2007) 89–91. 10.1016/j.scriptamat.2006.09.024Search in Google Scholar
[4] T.G.Nieh, J.Wadsworth: Mater. Sci. Forum170-172 (1994) 359–368. 10.4028/www.scientific.net/MSF.170-172.359Search in Google Scholar
[5] R.Kahandal, K.Yasui: Mater. Sci. Forum243-245 (1997) 687–694. 10.4028/www.scientific.net/MSF.243-245.687Search in Google Scholar
[6] J.Ye, A.Domínguez-Rodríguez: Scripta Met. Mater.33 (1995) 441–445. 10.1016/0956-716X(95)00206-BSearch in Google Scholar
[7] A.Domínguez-Rodríguez, F.Guiberteau, M.Jimenez-Melendo: J. Mater. Res.39 (1998) 1631–1636. 10.1557/JMR.1998.0224Search in Google Scholar
[8] F.Gutiérrez-MoraA.Domínguez-Rodríguez, J.L.Routbort, R.Chaim, F.Guiberteau: Scripta Mater.41 (1990) 455–460. 10.1016/S1359-6462(99)00190-6Search in Google Scholar
[9] K.C.Goretta, F.Gutiérrez-Mora, J.J.Picciolo, J.L.Routbort: Mater. Sci. Eng. A341 (2003) 158–162. 10.1016/S0921-5093(02)00212-5Search in Google Scholar
[10] D.G.Morris: (Mechanical behaviour of nanostructured materials) (1998) Trans Tech Pub. Ltd, Switzerland, vol. 2 of Mater. Sci. Foundations.10.4028/www.scientific.net/MSFo.2Search in Google Scholar
[11] M.A.Meyers, A.Mishra, D.J.Benson: (Mechanical properties of nanocrystalline materials), Prog. Mater. Sci.51 (2006) 427–556. 10.1016/j.pmatsci.2005.08.003Search in Google Scholar
[12] F.Gutierrez-Mora, D.Gómez-Garcí, M.Jímenez-Melendo, A.Domínguez-Rodríguez, R.Chaim: J. Amer. Ceram. Soc.88 (2005) 1529–1535. 10.1111/j.1551-2916.2005.00305.xSearch in Google Scholar
[13] R.B.Day, R.J.Stockes: J. Am. Ceram. Soc.49 (1966) 345–354. 10.1111/j.1151-2916.1966.tb13282.xSearch in Google Scholar
[14] T.E.Langdon, J.A.Pask: J. Am. Ceram. Soc.54 (1971) 240–246. 10.1111/j.1151-2916.1971.tb12280.xSearch in Google Scholar
[15] W.E.Snowden, J.A.Pask: Phil. Mag.29 (1974) 441–455. 10.1080/14786437408213231Search in Google Scholar
[16] J.M.Birch, B.Wilshire: J. Mater. Sci.9 (1974) 794–800. 10.1007/BF00761799Search in Google Scholar
[17] J.Crampon, B.Escaig: J. Mater. Sci.13 (1978) 2619–2626. 10.1007/BF02402748Search in Google Scholar
[18] J.Crampon, B.Escaig: J. Am. Ceram. Soc.63 (1980) 680–686. 10.1111/j.1151-2916.1980.tb09860.xSearch in Google Scholar
[19] J.Crampon: Acta Metall.28 (1980) 123–128. 10.1016/0001-6160(80)90045-0Search in Google Scholar
[20] T.Zisner, H.Tagai: J. Am. Ceram. Soc.51 (1968) 310–314. 10.1111/j.1151-2916.1968.tb15944.xSearch in Google Scholar
[21] Y.M.Chiang, A.F.Henriksen, W.D.Kingery, D.Finello: J. Am. Ceram. Soc.64 (1981) 385–389. 10.1111/j.1151-2916.1981.tb09875.xSearch in Google Scholar
[22] H.Conrad, D.Yang: Acta Mater.48 (2000) 4045–4052. 10.1016/S1359-6454(00)00203-2Search in Google Scholar
[23] H.Conrad: Scripta Mater.44 (2001) 311–316. 10.1016/S1359-6462(00)00589-3Search in Google Scholar
[24] A.H.Chokshi, A.K.Mukherjee, T.G.Langdon: Mater. Sci. Eng.R10 (1993) 237–274.10.1016/0927-796X(93)90009-RSearch in Google Scholar
[25] M.Jiménez-MelendoA.Domínguez-Rodríguez, A.Bravo-Leyón: J. Am. Ceram. Soc.81 (1998) 2761–2776. 10.1111/j.1151-2916.1998.tb02695.xSearch in Google Scholar
[26] M.Jiménez-MelendoA.Domínguez-Rodríguez: Acta Mater.48 (2000) 3201–3212. 10.1016/S1359-6454(00)00113-0Search in Google Scholar
[27] A.Domínguez-RodríguezA.Bravo-León, J.D.Ye, M.Jimenez-Melendo: Mater. Sci. Eng. A247 (1998) 97–101. 10.1016/S0921-5093(97)00837-XSearch in Google Scholar
[28] B.J.Wuensch, T.Vasilos: J. Am. Ceram. Soc.49 (1966) 433–436. 10.1111/j.1151-2916.1966.tb15411.xSearch in Google Scholar
[29] F.Gutiérrez-MoraA.Domínguez-Rodríguez, M.Jiménez-Melendo, R.Chaim, M.Hefetz: Nanostruc. Mater.11 (1999) 531–537. 10.1016/S0965-9773(99)00339-6Search in Google Scholar
[30] K.Morita, K.Hiraga: Acta Mater.50 (2002) 1075–1085. 10.1016/S1359-6454(01)00407-4Search in Google Scholar
[31] N.Balasubramanian, T.G.Langdon: Mater. Sci. Eng. A409 (2005) 46–51. 10.1016/j.msea.2005.06.071Search in Google Scholar
[32] C.Garcí-Ganán, J.J.Meléndez-Martinez, D.Gómez-Garcí, A.Domínguez-Rodríguez: J. Mater. Sci.41 (2006) 5231–5234. 10.1007/s10853-006-0433-9Search in Google Scholar
[33] G.S.A.M.Theunissen, A.J.A.Winnubst, A.J.Burggraaf: J. Mater. Sci.27 (1992) 5057–5066. 10.1007/BF01105274Search in Google Scholar
[34] A.E.Highes, S.P.S.Badwal: Solid State Ionics40/41 (1990) 312–315. 10.1016/0167-2738(90)90348-USearch in Google Scholar
[35] A.E.Highes, S.P.S.Badwal: Solid State Ionics46 (1991) 265–274. 10.1016/0167-2738(91)90225-ZSearch in Google Scholar
[36] A.E.Highes, B.A.Sexton: Solid State Ionics24 (1989) 1057–1061.Search in Google Scholar
[37] S.L.Hwang, I.W.Chen: J. Am. Ceram. Soc.73 (1990) 3269–3277. 10.1111/j.1151-2916.1990.tb06449.xSearch in Google Scholar
[38] J.S.Lee, D.Y.Kim: J. Mater. Res.16 (2001) 2739–2751. 10.1557/JMR.2001.0374Search in Google Scholar
[39] Y.Lei, N.D.Browning, T.J.Mazanec: J. Am. Ceram. Soc.85 (2002) 2359–2363. 10.1111/j.1151-2916.2002.tb00460.xSearch in Google Scholar
[40] X.Guo, Z.Zhang: Acta Mater.51 (2003) 2539–2547. 10.1016/S1359-6454(03)00052-1Search in Google Scholar
[41] D.Gómez-Garcí, C.Lorenzo-Martín, A.Muñoz-Bernabé, A.Domínguez-Rodríguez: Phys. Rev. B67 (2003) 144101–7. 10.1103/PhysRevB.67.144101Search in Google Scholar
[42] D.Gómez-Garcí, C.Lorenzo-Martín, A.Muñoz-Bernabé, A.Domínguez-Rodríguez: Philos. Mag. A83 (2003) 93–108. 10.1080/0141861021000017783Search in Google Scholar
[43] K.Matsui, N.Ohmichi, M.Ohgai, H.Yoshida, Y.Ikuhara: J. Ceram. Soc. Japan114 (2006) 230–237. 10.2109/jcersj.114.230Search in Google Scholar
[44] M.J.Roddy, W.R.Cannon, G.Skandan, H.Hahn: J. Eur. Ceram. Soc.22 (2002) 2657–2662. 10.1016/S0955-2219(02)00130-9Search in Google Scholar
[45] M.Yoshida, Y.Shinoda, T.Akatsu, F.Wakai: J. Am. Ceram. Soc.85 (2002) 2834–2836. 10.1111/j.1151-2916.2002.tb00536.xSearch in Google Scholar
[46] M.Yoshida, Y.Shinoda, T.Akasu, F.Wakai: J. Am. Ceram. Soc.87 (2004) 1122–1125. 10.1111/j.1551-2916.2004.01122.xSearch in Google Scholar
[47] P.Duran, M.Villegas, F.Capel, P.Recio, C.Moure: J. Eur. Ceram. Soc.16 (1996) 945–952. 10.1016/0955-2219(96)00015-5Search in Google Scholar
[48] R.Chaim, R.Ramamoorthy, A.Goldstein, I.Eldror, A.Gurman: J. Eur. Ceram. Soc.23 (2003) 647–657. 10.1016/S0955-2219(02)00198-XSearch in Google Scholar
[49] C.Lorenzo-Martín, D.Gómez-Garcí, A.Gallardo-Lopez, A.Domínguez-Rodríguez, R.Chaim: Mater. Sci. Forum447–448 (2004) 353–358. 10.4028/www.scientific.net/MSF.447-448.353Search in Google Scholar
[50] R.Chaim: Mater. Sci. Eng. A486 (2008) 439–446. 10.1016/j.msea.2007.09.022Search in Google Scholar
[51] A.Domínguez-RodríguezD.Gómez-Garcí, M.Castillo-Rodriguez: J. Eur. Ceram. Soc.28 (2008) 571–575. 10.1016/j.jeurceramsoc.2007.08.002Search in Google Scholar
[52] A.H.Chokshi: Scripta Mater.48 (2003) 791–796. 10.1016/S1359-6462(02)00519-5Search in Google Scholar
[53] T.G.Nieh, J.Wadsworth, O.D.Sherby: (Superplasticity in metals and ceramics), (1997) Cambridge University Press, UK. 10.1017/CBO9780511525230Search in Google Scholar
[54] J.Philibert: Solid State Ionics12 (1984) 321–336. 10.1016/0167-2738(84)90161-9Search in Google Scholar
[55] F.Finocchi, J.Goniakowski, C.Noguera: Phys. Rev. B59 (1999) 5178–5188. 10.1103/PhysRevB.59.5178Search in Google Scholar
[56] A.Ueda, R.Mu, Y.S.Tung, M.H.Wu, A.Zavalin, P.W.Wang, D.O.Hendeson: J. Phys. Cond. Mater.13 (2001) 5535–5544. 10.1088/0953-8984/13/23/313Search in Google Scholar
[57] P.Flewit, R.Wild: (Grain Boundaries: Their Microstructure and Chemistry) (2001) John Wiley & Sons Ltd., Chichester, UK, 137.Search in Google Scholar
[58] A.Barnhoorn, I.Jackson, J.D.Fitz Gerald, Y.Aizawa: J. Eur. Ceram. Soc.27 (2007) 4697–4703. 10.1016/j.jeurceramsoc.2007.04.005Search in Google Scholar
[59] U.H.Faul, J.D.Fitz Gerald, I.Jackson: J. Geophys. Res. Sol. Earth109 (2004) B06202. 10.1029/2003JB002407Search in Google Scholar
[60] J.A.Hines, Y.Ikuhara, A.H.Chokshi, T.Sakuma: Acta Mater.46 (1998) 5557–5568. 10.1016/S1359-6454(98)00171-2Search in Google Scholar
[61] E.Sato, H.Morioka, K.Kubribayashi, D.Sundararaman: J. Mater. Sci.34 (1999) 4511–4518. 10.1023/A:1004693306615Search in Google Scholar
[62] K.Morita, K.Hiraga, B.N.Kim: Acta Mater.52 (2004) 3355–3364. 10.1016/j.actamat.2004.03.033Search in Google Scholar
[63] H.Yoshida, K.Morita, B.N.Kim, K.Hiraga, T.Yamamoto: Acta Mater.57 (2009) 3029–3038. 10.1016/j.actamat.2009.03.009Search in Google Scholar
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial October 2010
- History
- Interactions between dislocations and interfaces – consequences for metal and ceramic plasticity
- Deformation mechanisms in yttria-stabilized cubic zirconia single crystals
- Basic
- Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
- Thermodynamic assessment of the Mn–Ni–O system
- Assessment of niobium segregation energy in migrating ferrite/austenite phase interfaces
- In-situ synthesis and characterization of Al2O3 nanostructured whiskers in Ti–Al intermetallic matrix composites
- Texture, structure and properties of Ni-based binary alloy tapes for HTS substrates
- Microstructure, texture, grain boundary characteristics and mechanical properties of a cold rolled and annealed ferrite–bainite dual phase steel
- Applied
- Microstructure and mechanical properties of differently extruded AZ31 magnesium alloy
- The role of talc in preparing steatite slurries suitable for spray-drying
- Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate
- Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents
- Controlled synthesis of prussian blue nanoparticles based on polymyxin B/sodium bis(2-ethylhexyl)sulfosuccinate/water/isooctane reverse microemulsion for glucose biosensors
- The melting diagram of the Ti–Dy–Sn system below 40 at.% Sn
- Preparation and photocatalytic properties of TiO2 film produced via spin coating
- DGM News
- Personal