Thermodynamic modeling of the Pt–Zr system
-
Yongliang Gao
, Cuiping Guo , Changrong Li und Zhenmin Du
Abstract
By means of the CALPHAD (CALculation of PHAse Diagram) technique, the Pt–Zr system was critically assessed. The solution phases (liquid, bcc, fcc and hcp) are described with the substitutional model. The intermetllic compounds Pt4Zr, Pt4Zr3, αPtZr and Pt3Zr5 are treated as the formula (Pt,Zr)m(Pt,Zr)n by a two-sublattice model with the elements Pt and Zr on the first and the second sublattices, respectively. A two-sublattice model (Pt,Zr)0.5(Pt,Zr)0.5 is applied to describe the compound βPtZr with CsCl-type structure (B2) in order to cope with the order–disorder transition between bcc solution (A2) and βPtZr (B2). Another two-sublattice model (Pt,Zr)0.75(Pt,Zr)0.25 with Ni3Ti-type structure (D024) is applied to describe the compound Pt3Zr in order to cope with the order–disorder transition between hexagonal close-packed (A3) and Pt3Zr (D024). The compound Pt10Zr7 is treated as a stoichiometric compound. A set of self-consistent thermodynamic parameters of the Pt–Zr system was obtained.
References
[1] V.N.Kuznetsov, G.P.Zhmurko, E.M.Sokolovskaya: J. Less-Common Met.163 (1990) 1. 10.1016/0022-5088(90)90080-4Suche in Google Scholar
[2] E.G.Kendall, C.Hays, R.E.Swift: Trans. Met. Soc. AIME221 (1961) 445.Suche in Google Scholar
[3] A.S.Darling, G.L.Selman, R.Rushforth: Platinum Metals Rev.14 (1970) 124.Suche in Google Scholar
[4] E.Savitsky, V.Polyakova, N.Gorina, N.Roshan: Physical Metallurgy of Platinum Metals, Mir Publishers, Moscow, 1978.Suche in Google Scholar
[5] P.J.Meschter, W.L.Worrell: Metall. Trans. A8 (1977) 503. 10.1007/BF02661762Suche in Google Scholar
[6] P.Krautwasser, S.Bhan, K.Schubert: Z. Metallkd.59 (1968) 724.Suche in Google Scholar
[7] T.B.Massalski, H.Okamoto, P.R.Subramanian, L.Kacprzak: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, 1990.Suche in Google Scholar
[8] G.B.Fairbank, C.J.Humphreys, A.Kelly, C.N.Jones: Intermetallics8 (2000) 1091. 10.1016/S0966-9795(00)00040-6Suche in Google Scholar
[9] Yu.J.Konobas, M.V.Raevskaya, I.G.Sokolova: J. Less-Common Met.115 (1986) L5. 10.1016/0022-5088(86)90161-XSuche in Google Scholar
[10] P.R.Alonso, D.E.Arias, L.M.Gribaudo: Scripta mater.44 (2001) 429. 10.1016/S1359-6462(00)00618-7Suche in Google Scholar
[11] J.K.Stalick, R.M.Waterstrat: J. Alloys Compd.430 (2007) 123. 10.1016/j.jallcom.2006.04.055Suche in Google Scholar
[12] K.Schubert, S.Bhan, T.K.Biswas, K.Frank, P.K.Panday: Die Naturwissenschaften55 (1968) 542. 10.1007/BF00660131Suche in Google Scholar
[13] H.J.Wallbaum: Die Naturwissenschaften31 (1943) 91. 10.1007/BF01495300Suche in Google Scholar
[14] A.Raman, K.Schubert: Z. Metallkd.55 (1964) 704.Suche in Google Scholar
[15] A.E.Dwight, R.A.Conner, J.W.Downey: Acta Cryst.18 (1965) 835. 10.1107/S0365110X65002050Suche in Google Scholar
[16] T.K.Biswas, K.Schubert: Z. Metallkd.58 (1967) 558.Suche in Google Scholar
[17] R.S.Carbonara, G.D.Blue: High Temp. Sci.3 (1971) 225.Suche in Google Scholar
[18] V.Srikrishnan, P.J.Ficalora: Metall. Trans.5 (1974) 1471. 10.1007/BF02646634Suche in Google Scholar
[19] J.C.Gachon, J.Charles, J.Hertz: Calphad9 (1985) 29. 10.1016/0364-5916(85)90028-8Suche in Google Scholar
[20] L.Topor, O.J.Kleppa: Metall. Trans. A19 (1988) 1827. 10.1007/BF02645151Suche in Google Scholar
[21] J.C.Gachon, N.Selhaoui, B.Aba, J.Hertz: J. Phase Equilib.13 (1992) 506. 10.1007/BF02665763Suche in Google Scholar
[22] Q.Guo, O.J.Kleppa: J. Alloys Compd.266 (1998) 224. 10.1016/S0925-8388(97)00484-2Suche in Google Scholar
[23] L.Kaufman, H.Bernstein: Computer calculation of phase diagram, Academic Press, New York, 1970.Suche in Google Scholar
[24] A.K.Niessen, F.R.de Boer, R.Boom, P.F.de Chatel, W.C.M.Mattens, A.R.Miedema: Calphad7 (1983) 51. 10.1016/0364-5916(83)90030-5Suche in Google Scholar
[25] R.E.Watson, L.H.Bennett: Calphad8 (1984) 307. 10.1016/0364-5916(84)90034-8Suche in Google Scholar
[26] C.Colinet, A.Pasturel, P.Hicter: Calphad9 (1985) 71. 10.1016/0364-5916(85)90032-XSuche in Google Scholar
[27] H.J.Schaller, Ber.Bunsenges: Phys.Chem.80 (1976) 999.10.1021/j100550a016Suche in Google Scholar
[28] A.T.Dinsdale: Calphad15 (1991) 317. 10.1016/0364-5916(91)90030-NSuche in Google Scholar
[29] O.Redlich, A.T.Kister: Ind. Eng. Chem.40 (1948) 345. 10.1021/ie50458a036Suche in Google Scholar
[30] I.Ansara, N.Dupin, H.L.Lukas, B.Sundman: J. Alloys Compd.247 (1997) 20. 10.1016/S0925-8388(96)02652-7Suche in Google Scholar
[31] M.Hillert, L.I.Staffansson: Acta Chem. Scand.24 (1970) 3618. 10.3891/acta.chem.scand.24-3618Suche in Google Scholar
[32] B.Sundman, J.Agren: J. Phys. Chem. Solids42 (1981) 297. 10.1016/0022-3697(81)90144-XSuche in Google Scholar
[33] B.Sundman, B.Jansson, J.O.Andersson: Calphad9 (1985) 153. 10.1016/0364-5916(85)90021-5Suche in Google Scholar
[34] A.Fernandez Guillermet, W.Huang: Z. Metallkd.79 (1988) 88.Suche in Google Scholar
© 2010, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Basic
- Thermodynamic modeling of the Pt–Zr system
- Experimental investigation and thermodynamic prediction of the Ga–Sb–Sn phase equilibria
- Calculation of the viscosity of the liquid ternary Ag–Au–Sn system
- Thermophysical properties of liquid tin–bismuth alloys
- A comparative AFM study of carbon alloyed Mo–Se–C and W–S–C films for tribological applications
- Luminescence of Fe-substituted ZnWO4 powders synthesized by aqueous solution reaction
- Electromagnetic radiation during plastic deformation under unrestricted quasi-static compression in metals and alloys
- Applied
- Microstructure and mechanical properties of Fe3Al–TiC composites
- Study of wear behaviour of ductile iron subjected to two step austempering
- Effect of annealing on formability and crystallographic textures of aluminium 5052 alloy sheets
- The use of fly ash and basaltic pumice as additives in the productionof clay fired brick in Turkey
- Insulation properties of bricks made with cotton and textile ash wastes
- Effects of homogenizing and aging treatments on the microstructure and microhardness of an Nb-silicide based ultrahigh temperature alloy
- Alloys with thermal expansion matching to electrolyte materials for solid oxide fuel cells
- Simulation-based study of the compensation coil method applied to ferrite nanometric powders
- DGM News
- Zum 75. Geburtstag von Prof. Dr.-Ing. habil. Peter Klimanek
Artikel in diesem Heft
- Contents
- Contents
- Basic
- Thermodynamic modeling of the Pt–Zr system
- Experimental investigation and thermodynamic prediction of the Ga–Sb–Sn phase equilibria
- Calculation of the viscosity of the liquid ternary Ag–Au–Sn system
- Thermophysical properties of liquid tin–bismuth alloys
- A comparative AFM study of carbon alloyed Mo–Se–C and W–S–C films for tribological applications
- Luminescence of Fe-substituted ZnWO4 powders synthesized by aqueous solution reaction
- Electromagnetic radiation during plastic deformation under unrestricted quasi-static compression in metals and alloys
- Applied
- Microstructure and mechanical properties of Fe3Al–TiC composites
- Study of wear behaviour of ductile iron subjected to two step austempering
- Effect of annealing on formability and crystallographic textures of aluminium 5052 alloy sheets
- The use of fly ash and basaltic pumice as additives in the productionof clay fired brick in Turkey
- Insulation properties of bricks made with cotton and textile ash wastes
- Effects of homogenizing and aging treatments on the microstructure and microhardness of an Nb-silicide based ultrahigh temperature alloy
- Alloys with thermal expansion matching to electrolyte materials for solid oxide fuel cells
- Simulation-based study of the compensation coil method applied to ferrite nanometric powders
- DGM News
- Zum 75. Geburtstag von Prof. Dr.-Ing. habil. Peter Klimanek