Startseite Thermodynamic modeling of the Pt–Zr system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermodynamic modeling of the Pt–Zr system

  • Yongliang Gao , Cuiping Guo , Changrong Li und Zhenmin Du
Veröffentlicht/Copyright: 18. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

By means of the CALPHAD (CALculation of PHAse Diagram) technique, the Pt–Zr system was critically assessed. The solution phases (liquid, bcc, fcc and hcp) are described with the substitutional model. The intermetllic compounds Pt4Zr, Pt4Zr3, αPtZr and Pt3Zr5 are treated as the formula (Pt,Zr)m(Pt,Zr)n by a two-sublattice model with the elements Pt and Zr on the first and the second sublattices, respectively. A two-sublattice model (Pt,Zr)0.5(Pt,Zr)0.5 is applied to describe the compound βPtZr with CsCl-type structure (B2) in order to cope with the order–disorder transition between bcc solution (A2) and βPtZr (B2). Another two-sublattice model (Pt,Zr)0.75(Pt,Zr)0.25 with Ni3Ti-type structure (D024) is applied to describe the compound Pt3Zr in order to cope with the order–disorder transition between hexagonal close-packed (A3) and Pt3Zr (D024). The compound Pt10Zr7 is treated as a stoichiometric compound. A set of self-consistent thermodynamic parameters of the Pt–Zr system was obtained.


Professor Zhenmin Du, Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China, Tel./Fax: +86 10 62333772, E-mail:

References

[1] V.N.Kuznetsov, G.P.Zhmurko, E.M.Sokolovskaya: J. Less-Common Met.163 (1990) 1. 10.1016/0022-5088(90)90080-4Suche in Google Scholar

[2] E.G.Kendall, C.Hays, R.E.Swift: Trans. Met. Soc. AIME221 (1961) 445.Suche in Google Scholar

[3] A.S.Darling, G.L.Selman, R.Rushforth: Platinum Metals Rev.14 (1970) 124.Suche in Google Scholar

[4] E.Savitsky, V.Polyakova, N.Gorina, N.Roshan: Physical Metallurgy of Platinum Metals, Mir Publishers, Moscow, 1978.Suche in Google Scholar

[5] P.J.Meschter, W.L.Worrell: Metall. Trans. A8 (1977) 503. 10.1007/BF02661762Suche in Google Scholar

[6] P.Krautwasser, S.Bhan, K.Schubert: Z. Metallkd.59 (1968) 724.Suche in Google Scholar

[7] T.B.Massalski, H.Okamoto, P.R.Subramanian, L.Kacprzak: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, 1990.Suche in Google Scholar

[8] G.B.Fairbank, C.J.Humphreys, A.Kelly, C.N.Jones: Intermetallics8 (2000) 1091. 10.1016/S0966-9795(00)00040-6Suche in Google Scholar

[9] Yu.J.Konobas, M.V.Raevskaya, I.G.Sokolova: J. Less-Common Met.115 (1986) L5. 10.1016/0022-5088(86)90161-XSuche in Google Scholar

[10] P.R.Alonso, D.E.Arias, L.M.Gribaudo: Scripta mater.44 (2001) 429. 10.1016/S1359-6462(00)00618-7Suche in Google Scholar

[11] J.K.Stalick, R.M.Waterstrat: J. Alloys Compd.430 (2007) 123. 10.1016/j.jallcom.2006.04.055Suche in Google Scholar

[12] K.Schubert, S.Bhan, T.K.Biswas, K.Frank, P.K.Panday: Die Naturwissenschaften55 (1968) 542. 10.1007/BF00660131Suche in Google Scholar

[13] H.J.Wallbaum: Die Naturwissenschaften31 (1943) 91. 10.1007/BF01495300Suche in Google Scholar

[14] A.Raman, K.Schubert: Z. Metallkd.55 (1964) 704.Suche in Google Scholar

[15] A.E.Dwight, R.A.Conner, J.W.Downey: Acta Cryst.18 (1965) 835. 10.1107/S0365110X65002050Suche in Google Scholar

[16] T.K.Biswas, K.Schubert: Z. Metallkd.58 (1967) 558.Suche in Google Scholar

[17] R.S.Carbonara, G.D.Blue: High Temp. Sci.3 (1971) 225.Suche in Google Scholar

[18] V.Srikrishnan, P.J.Ficalora: Metall. Trans.5 (1974) 1471. 10.1007/BF02646634Suche in Google Scholar

[19] J.C.Gachon, J.Charles, J.Hertz: Calphad9 (1985) 29. 10.1016/0364-5916(85)90028-8Suche in Google Scholar

[20] L.Topor, O.J.Kleppa: Metall. Trans. A19 (1988) 1827. 10.1007/BF02645151Suche in Google Scholar

[21] J.C.Gachon, N.Selhaoui, B.Aba, J.Hertz: J. Phase Equilib.13 (1992) 506. 10.1007/BF02665763Suche in Google Scholar

[22] Q.Guo, O.J.Kleppa: J. Alloys Compd.266 (1998) 224. 10.1016/S0925-8388(97)00484-2Suche in Google Scholar

[23] L.Kaufman, H.Bernstein: Computer calculation of phase diagram, Academic Press, New York, 1970.Suche in Google Scholar

[24] A.K.Niessen, F.R.de Boer, R.Boom, P.F.de Chatel, W.C.M.Mattens, A.R.Miedema: Calphad7 (1983) 51. 10.1016/0364-5916(83)90030-5Suche in Google Scholar

[25] R.E.Watson, L.H.Bennett: Calphad8 (1984) 307. 10.1016/0364-5916(84)90034-8Suche in Google Scholar

[26] C.Colinet, A.Pasturel, P.Hicter: Calphad9 (1985) 71. 10.1016/0364-5916(85)90032-XSuche in Google Scholar

[27] H.J.Schaller, Ber.Bunsenges: Phys.Chem.80 (1976) 999.10.1021/j100550a016Suche in Google Scholar

[28] A.T.Dinsdale: Calphad15 (1991) 317. 10.1016/0364-5916(91)90030-NSuche in Google Scholar

[29] O.Redlich, A.T.Kister: Ind. Eng. Chem.40 (1948) 345. 10.1021/ie50458a036Suche in Google Scholar

[30] I.Ansara, N.Dupin, H.L.Lukas, B.Sundman: J. Alloys Compd.247 (1997) 20. 10.1016/S0925-8388(96)02652-7Suche in Google Scholar

[31] M.Hillert, L.I.Staffansson: Acta Chem. Scand.24 (1970) 3618. 10.3891/acta.chem.scand.24-3618Suche in Google Scholar

[32] B.Sundman, J.Agren: J. Phys. Chem. Solids42 (1981) 297. 10.1016/0022-3697(81)90144-XSuche in Google Scholar

[33] B.Sundman, B.Jansson, J.O.Andersson: Calphad9 (1985) 153. 10.1016/0364-5916(85)90021-5Suche in Google Scholar

[34] A.Fernandez Guillermet, W.Huang: Z. Metallkd.79 (1988) 88.Suche in Google Scholar

Received: 2008-12-5
Accepted: 2010-4-27
Published Online: 2013-05-18
Published in Print: 2010-07-01

© 2010, Carl Hanser Verlag, München

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110351/html?lang=de
Button zum nach oben scrollen