Luminescence of Fe-substituted ZnWO4 powders synthesized by aqueous solution reaction
-
H. Y. He
, J. F. Huang , L. Y. Cao , J. P. Wu and P. Chen
Abstract
Fe-substituted ZnWO4 as a possibleopticalmaterialhas someinteresting properties. We report a comparison of luminescence properties of pure ZnWO4 and Zn0.99Fe0.01WO4 powders synthesized with aqueous salt metathesis reaction in this work. The experimental results indicated that the Fe-substitution results in decreases in the crystallinity and grain size. In comparison with the pure ZnWO4, the Zn0.99Fe0.01WO4 powder shows a small intensity of blue-green emission band, significantly smaller intensity of emission peaks at longer wavelength, large half-widths of the emission bands, and a red emission band at a range of 590–680 nm. The results clearly indicate that the red emission band is related to the Fe3+ cation.
References
[1] G.L.Huang, Y.F.Zhu: Mater. Sci. Eng. B.139 (2007) 201–208. 10.1016/j.mseb.2007.02.009Search in Google Scholar
[2] G.L.Huang, C.H.Zhang, Y.F.Zhu: J. Alloy. Compd.432 (2007) 269–276. 10.1016/j.jallcom.2006.05.109Search in Google Scholar
[3] H.B.Fu, C.S.Pan, L.W.Zhang, Y.F.Zhu: Mate. Res. Bull.42 (2007) 696–706. 10.1016/j.materresbull.2006.07.017Search in Google Scholar
[4] X.Z.W.Q.Yao, Y.Wu, S.C.Zhang, H.P.Yang, Y.F.Zhu: J. Solid State Chem.179 (2006) 2562–257010.1016/j.jssc.2006.05.004Search in Google Scholar
[5] H.B.Fu, J.Lin, L.W.Zhang, Y.F.Zhu: Appl. Cat. A: General.306 (2006) 58–67. 10.1016/j.apcata.2006.03.040Search in Google Scholar
[6] R.C.Pullar, S.Farrah, N.McN.Alford: J. Europ. Ceram. Soc.27 (2007) 1059–1063. 10.1016/j.jeurceramsoc.2006.05.085Search in Google Scholar
[7] X.H.Jiang, J.F.Ma, J.Liu, Y.Ren, B.Lin, J.T.Tao, X.Y.Zhu: Mater. Lett.61 (2007) 4595–4598. 10.1016/j.matlet.2007.02.058Search in Google Scholar
[8] M.Itoh, T.Katagiri, T.Aoki, M.Fujita: Radiation Measurements.42 (2007) 545–548. 10.1016/j.radmeas.2007.01.049Search in Google Scholar
[9] S.J.Chen, J.H.Zhou, X.T.Chen, J.Li, L.H.Li, J.M.Hong, Z.l.Xue, X.Z.You: Chem. Phys. Lett.375 (2003) 185–190. 10.1016/S0009-2614(03)00878-9Search in Google Scholar
[10] Z.D.Lou, J.H.Hao, M. Cocivera; J. Lumin.99 (2002) 349–354. 10.1016/S0022-2313(02)00372-1Search in Google Scholar
[11] V.Pankratov, L.Grigorjeva, D.Millers, S.Chernov, A. S.Voloshinovskii: J. Lumin.94–95 (2001) 427–432. 10.1016/S0022-2313(01)00326-XSearch in Google Scholar
[12] H.Wang, F.D.Medina, M.S.Antonious, CyrilPárkányi, Jerome E.Haky, Donald M.Baird, Ya-DongZhou: Chem. Phys. Lett.205 (1993) 497–501. 10.1016/0009-2614(93)80003-8Search in Google Scholar
[13] V.Nagirnyi, L.Jönssonb, M.Kirmc, A.Kotlova, A.Lushchika, I.Martinsonb, A.Watterichd, B.I.Zadneprovskie: Rad. Meas.38 (2004) 519–522. 10.1016/j.radmeas.2004.01.024Search in Google Scholar
[14] A.Kornyloa, A.Jankowska-Frydel, B.Kuklinskia, M.Grinberga, N.Krutiakb, Z.Morozb, M.Pashkowskyb: Rad. Meas.38 (2004) 707–710. 10.1016/j.radmeas.2004.03.003Search in Google Scholar
[15] L.Malicskoa, A.Pétera, W.Erfurthb: J. Cryst. Growth.151 (1995) 127–133. 10.1016/0022-0248(95)00015-1Search in Google Scholar
[16] A.Kotlov, L.Jönssonb, M.Kirmc, A.Lushchika, V.Nagirnyia, E.Rivkina, A.Watterichd, B.I.Zadneprovskie: Rad. Meas.38 (2004) 715–718. 10.1016/j.radmeas.2003.12.028Search in Google Scholar
[17] L.Grigorjevai, V.Pankratovi, D.Millersi, S.Chernovi, V.Nagirnyi, A.Kotlov, A.Watterich: Radiation Effects and Defects in Solids158 (2003) 135–139. 10.1080/1042015021000052467Search in Google Scholar
[18] V.Nagirnyi, S.Chernov, L.Grigorjeva, L.Jonsson, M.Kirm, A.Kotlov, A.Lushichik, D.Millers, V. A.Nefedov, V.Pankratov, B. I.Zadneprovski: Radiation Effects and Defects in Solids157 (2002) 1123–1126. 10.1080/10420150215748Search in Google Scholar
[19] I.Földvári, R.Capelletti, ÁPiter, I.Cravero and A.Watterich: Solid State Com.59 (1986) 855–860. 10.1016/0038-1098(86)90643-5Search in Google Scholar
[20] J.H.Ryu, C.S.Lim, K.H.Auh: Mater. Lett.57 (2003) 1550–1554. 10.1016/S0167-577X(02)01022-4Search in Google Scholar
[21] S.M.Montemayor, A.F.Fuentes: Ceram. Inter.30 (2004) 393–400. 10.1016/S0272-8842(03)00122-6Search in Google Scholar
[22] http://webmineral.com/data/Sanmartinite.shtmlSearch in Google Scholar
[23] I.Földvári, R.Capelletti, A.Péter, F.Schmidt: Solid State Com.63 (9) (1987) 787–791. 10.1016/0038-1098(87)90886-6Search in Google Scholar
[24] V.Yakovyna, Ya.Zhydachevskii, V.B.Mikhailik, I.Solskii, D.Sugak, M.Vakiv: Opt. Mater.30 (2008) 1630–1634. 10.1016/j.optmat.2007.11.003Search in Google Scholar
[25] V.B.Mikhailik, H.Kraus, D.Wahl: Phys. Rev. B.69 (2004) 205110. 10.1103/PhysRevB.69.205110Search in Google Scholar
[26] V.B.Mikhailik, H.Kraus, G.Miller: J. Appl. Phys.97 (2005) 083523–08528. 10.1063/1.1872198Search in Google Scholar
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Basic
- Thermodynamic modeling of the Pt–Zr system
- Experimental investigation and thermodynamic prediction of the Ga–Sb–Sn phase equilibria
- Calculation of the viscosity of the liquid ternary Ag–Au–Sn system
- Thermophysical properties of liquid tin–bismuth alloys
- A comparative AFM study of carbon alloyed Mo–Se–C and W–S–C films for tribological applications
- Luminescence of Fe-substituted ZnWO4 powders synthesized by aqueous solution reaction
- Electromagnetic radiation during plastic deformation under unrestricted quasi-static compression in metals and alloys
- Applied
- Microstructure and mechanical properties of Fe3Al–TiC composites
- Study of wear behaviour of ductile iron subjected to two step austempering
- Effect of annealing on formability and crystallographic textures of aluminium 5052 alloy sheets
- The use of fly ash and basaltic pumice as additives in the productionof clay fired brick in Turkey
- Insulation properties of bricks made with cotton and textile ash wastes
- Effects of homogenizing and aging treatments on the microstructure and microhardness of an Nb-silicide based ultrahigh temperature alloy
- Alloys with thermal expansion matching to electrolyte materials for solid oxide fuel cells
- Simulation-based study of the compensation coil method applied to ferrite nanometric powders
- DGM News
- Zum 75. Geburtstag von Prof. Dr.-Ing. habil. Peter Klimanek
Articles in the same Issue
- Contents
- Contents
- Basic
- Thermodynamic modeling of the Pt–Zr system
- Experimental investigation and thermodynamic prediction of the Ga–Sb–Sn phase equilibria
- Calculation of the viscosity of the liquid ternary Ag–Au–Sn system
- Thermophysical properties of liquid tin–bismuth alloys
- A comparative AFM study of carbon alloyed Mo–Se–C and W–S–C films for tribological applications
- Luminescence of Fe-substituted ZnWO4 powders synthesized by aqueous solution reaction
- Electromagnetic radiation during plastic deformation under unrestricted quasi-static compression in metals and alloys
- Applied
- Microstructure and mechanical properties of Fe3Al–TiC composites
- Study of wear behaviour of ductile iron subjected to two step austempering
- Effect of annealing on formability and crystallographic textures of aluminium 5052 alloy sheets
- The use of fly ash and basaltic pumice as additives in the productionof clay fired brick in Turkey
- Insulation properties of bricks made with cotton and textile ash wastes
- Effects of homogenizing and aging treatments on the microstructure and microhardness of an Nb-silicide based ultrahigh temperature alloy
- Alloys with thermal expansion matching to electrolyte materials for solid oxide fuel cells
- Simulation-based study of the compensation coil method applied to ferrite nanometric powders
- DGM News
- Zum 75. Geburtstag von Prof. Dr.-Ing. habil. Peter Klimanek