Home Thermodynamic modeling of the Pt–Zr system
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic modeling of the Pt–Zr system

  • Yongliang Gao , Cuiping Guo , Changrong Li and Zhenmin Du
Published/Copyright: May 18, 2013
Become an author with De Gruyter Brill

Abstract

By means of the CALPHAD (CALculation of PHAse Diagram) technique, the Pt–Zr system was critically assessed. The solution phases (liquid, bcc, fcc and hcp) are described with the substitutional model. The intermetllic compounds Pt4Zr, Pt4Zr3, αPtZr and Pt3Zr5 are treated as the formula (Pt,Zr)m(Pt,Zr)n by a two-sublattice model with the elements Pt and Zr on the first and the second sublattices, respectively. A two-sublattice model (Pt,Zr)0.5(Pt,Zr)0.5 is applied to describe the compound βPtZr with CsCl-type structure (B2) in order to cope with the order–disorder transition between bcc solution (A2) and βPtZr (B2). Another two-sublattice model (Pt,Zr)0.75(Pt,Zr)0.25 with Ni3Ti-type structure (D024) is applied to describe the compound Pt3Zr in order to cope with the order–disorder transition between hexagonal close-packed (A3) and Pt3Zr (D024). The compound Pt10Zr7 is treated as a stoichiometric compound. A set of self-consistent thermodynamic parameters of the Pt–Zr system was obtained.


Professor Zhenmin Du, Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China, Tel./Fax: +86 10 62333772, E-mail:

References

[1] V.N.Kuznetsov, G.P.Zhmurko, E.M.Sokolovskaya: J. Less-Common Met.163 (1990) 1. 10.1016/0022-5088(90)90080-4Search in Google Scholar

[2] E.G.Kendall, C.Hays, R.E.Swift: Trans. Met. Soc. AIME221 (1961) 445.Search in Google Scholar

[3] A.S.Darling, G.L.Selman, R.Rushforth: Platinum Metals Rev.14 (1970) 124.Search in Google Scholar

[4] E.Savitsky, V.Polyakova, N.Gorina, N.Roshan: Physical Metallurgy of Platinum Metals, Mir Publishers, Moscow, 1978.Search in Google Scholar

[5] P.J.Meschter, W.L.Worrell: Metall. Trans. A8 (1977) 503. 10.1007/BF02661762Search in Google Scholar

[6] P.Krautwasser, S.Bhan, K.Schubert: Z. Metallkd.59 (1968) 724.Search in Google Scholar

[7] T.B.Massalski, H.Okamoto, P.R.Subramanian, L.Kacprzak: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, 1990.Search in Google Scholar

[8] G.B.Fairbank, C.J.Humphreys, A.Kelly, C.N.Jones: Intermetallics8 (2000) 1091. 10.1016/S0966-9795(00)00040-6Search in Google Scholar

[9] Yu.J.Konobas, M.V.Raevskaya, I.G.Sokolova: J. Less-Common Met.115 (1986) L5. 10.1016/0022-5088(86)90161-XSearch in Google Scholar

[10] P.R.Alonso, D.E.Arias, L.M.Gribaudo: Scripta mater.44 (2001) 429. 10.1016/S1359-6462(00)00618-7Search in Google Scholar

[11] J.K.Stalick, R.M.Waterstrat: J. Alloys Compd.430 (2007) 123. 10.1016/j.jallcom.2006.04.055Search in Google Scholar

[12] K.Schubert, S.Bhan, T.K.Biswas, K.Frank, P.K.Panday: Die Naturwissenschaften55 (1968) 542. 10.1007/BF00660131Search in Google Scholar

[13] H.J.Wallbaum: Die Naturwissenschaften31 (1943) 91. 10.1007/BF01495300Search in Google Scholar

[14] A.Raman, K.Schubert: Z. Metallkd.55 (1964) 704.Search in Google Scholar

[15] A.E.Dwight, R.A.Conner, J.W.Downey: Acta Cryst.18 (1965) 835. 10.1107/S0365110X65002050Search in Google Scholar

[16] T.K.Biswas, K.Schubert: Z. Metallkd.58 (1967) 558.Search in Google Scholar

[17] R.S.Carbonara, G.D.Blue: High Temp. Sci.3 (1971) 225.Search in Google Scholar

[18] V.Srikrishnan, P.J.Ficalora: Metall. Trans.5 (1974) 1471. 10.1007/BF02646634Search in Google Scholar

[19] J.C.Gachon, J.Charles, J.Hertz: Calphad9 (1985) 29. 10.1016/0364-5916(85)90028-8Search in Google Scholar

[20] L.Topor, O.J.Kleppa: Metall. Trans. A19 (1988) 1827. 10.1007/BF02645151Search in Google Scholar

[21] J.C.Gachon, N.Selhaoui, B.Aba, J.Hertz: J. Phase Equilib.13 (1992) 506. 10.1007/BF02665763Search in Google Scholar

[22] Q.Guo, O.J.Kleppa: J. Alloys Compd.266 (1998) 224. 10.1016/S0925-8388(97)00484-2Search in Google Scholar

[23] L.Kaufman, H.Bernstein: Computer calculation of phase diagram, Academic Press, New York, 1970.Search in Google Scholar

[24] A.K.Niessen, F.R.de Boer, R.Boom, P.F.de Chatel, W.C.M.Mattens, A.R.Miedema: Calphad7 (1983) 51. 10.1016/0364-5916(83)90030-5Search in Google Scholar

[25] R.E.Watson, L.H.Bennett: Calphad8 (1984) 307. 10.1016/0364-5916(84)90034-8Search in Google Scholar

[26] C.Colinet, A.Pasturel, P.Hicter: Calphad9 (1985) 71. 10.1016/0364-5916(85)90032-XSearch in Google Scholar

[27] H.J.Schaller, Ber.Bunsenges: Phys.Chem.80 (1976) 999.10.1021/j100550a016Search in Google Scholar

[28] A.T.Dinsdale: Calphad15 (1991) 317. 10.1016/0364-5916(91)90030-NSearch in Google Scholar

[29] O.Redlich, A.T.Kister: Ind. Eng. Chem.40 (1948) 345. 10.1021/ie50458a036Search in Google Scholar

[30] I.Ansara, N.Dupin, H.L.Lukas, B.Sundman: J. Alloys Compd.247 (1997) 20. 10.1016/S0925-8388(96)02652-7Search in Google Scholar

[31] M.Hillert, L.I.Staffansson: Acta Chem. Scand.24 (1970) 3618. 10.3891/acta.chem.scand.24-3618Search in Google Scholar

[32] B.Sundman, J.Agren: J. Phys. Chem. Solids42 (1981) 297. 10.1016/0022-3697(81)90144-XSearch in Google Scholar

[33] B.Sundman, B.Jansson, J.O.Andersson: Calphad9 (1985) 153. 10.1016/0364-5916(85)90021-5Search in Google Scholar

[34] A.Fernandez Guillermet, W.Huang: Z. Metallkd.79 (1988) 88.Search in Google Scholar

Received: 2008-12-5
Accepted: 2010-4-27
Published Online: 2013-05-18
Published in Print: 2010-07-01

© 2010, Carl Hanser Verlag, München

Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110351/html
Scroll to top button