Home Technology Microstructure and mechanical properties of NiAl–Cr(Mo)–Hf/Ho near-eutectic alloy prepared by suction casting
Article
Licensed
Unlicensed Requires Authentication

Microstructure and mechanical properties of NiAl–Cr(Mo)–Hf/Ho near-eutectic alloy prepared by suction casting

  • Liyuan Sheng , Jianting Guo , Wei Zhang , Lanzhang Zhou and Hengqiang Ye
Published/Copyright: June 11, 2013

Abstract

The microstructure and mechanical properties of 0.15 at.% Hf and 0.2 at.% Ho doped Ni-33Al-28Cr-6Mo near-eutectic alloys prepared by conventional casting and suction casting were investigated. The results reveal that the addition of Hf and Ho results in the formation of Ni2AlHf and Ni2Al3Ho phases, respectively, along the NiAl and Cr(Mo) phase interface in intercellular regions. Compared with the conventional-cast alloy, the microstructure of suction-cast alloy is well optimized, characterized by the thin interlamellar spacing, high proportion of eutectic cell area and fine homogeneously distributed Ni2AlHf and Ni2Al3Ho phases. Furthermore, the room temperature mechanical properties of the suction-cast alloy improve significantly, which can be attributed to fine microstructure, uniform distribution of the Ni2AlHf and Ni2Al3Ho phases and solid solubility extension.


* Correspondence address, Prof. Jianting Guo Superalloys Division Institute of Metal Research, Chinese Academy of Sciences 72 Wenhua Road Shenyang 110016, China Tel.: +86 24 2397 1917 Fax: +86 24 8397 8045 Email address:

References

[1] D.B.Miracle: Acta Metal. Mater.41 (1993) 649684.10.1016/0956-7151(93)90001-9Search in Google Scholar

[2] R.D.Noebe, R.R.Bowman, M.V.Nathal: Int. Mater. Rev.38 (1993) 193232.10.1179/imr.1993.38.4.193Search in Google Scholar

[3] A.Misra, R.Gibala: Intermetallics8 (2000) 10251034.10.1016/S0966-9795(00)00079-0Search in Google Scholar

[4] H.E.Cline, J.L.Walter: Metal. Trans.15 (1970) 29072917.10.1007/BF03037830Search in Google Scholar

[5] H.E.Cline, J.L.Walter, E.Lifshin, R.R.Russell: Metal. Trans.17 (1970) 189194.Search in Google Scholar

[6] D.R.Johnson, X.F.Chen, B.F.Oliver, R.D.Noebe, J.D.Whitterberger: Intermetallics3 (1995) 99113.10.1016/0966-9795(95)92674-OSearch in Google Scholar

[7] L.Y.Sheng, J.T.Guo, L.Z.Zhou, H.Q.Ye: Mater. Sci. Eng. A500 (2009) 238243.10.1016/j.msea.2008.09.020Search in Google Scholar

[8] B.Sun, X.Z.Che, G.N.Yang, Y.H.Zhou, D.L.Lin: Scr. Metall. Mater.33 (1995) 11451149.10.1016/0956-716X(95)00326-QSearch in Google Scholar

[9] L.Y.Sheng, J.T.Guo, H.Q.Ye: Mater. Design30 (2009) 964969.10.1016/j.matdes.2008.06.061Search in Google Scholar

[10] J.T.Guo, L.Y.Sheng, Y.X.Tian, L.Z.Zhou, H.Q.Ye: Mater. Let.62 (2008) 39103912.10.1016/j.matlet.2008.05.038Search in Google Scholar

[11] T.-S.Kim, S.-Y.Lee, J.-K.Lee, H.-J.Kim, D.H.Kim, J.C.Bae: Mater. Sci. Eng. A449–451 (2007) 880883.10.1016/j.msea.2006.03.143Search in Google Scholar

[12] M.Probst-Hein, A.Dlouhy, G.Eggeler: Acta Mater.47 (1999) 24972510.10.1016/S1359-6454(99)00092-0Search in Google Scholar

[13] Y.Song, Z.X.Guo, R.Yang, D.Li: Acta Mater.49 (2001) 16471654.10.1016/S1359-6454(01)00052-0Search in Google Scholar

[14] G.Bozzolo, R.D.Noebe, F.Honecy: Intermetallics8 (2000) 718.10.1016/S0966-9795(99)00066-7Search in Google Scholar

[15] G.Frommeyer, T.Fischer, J.Deges, R.Rablbauer, A.Schneider: Ultramicroscopy161 (2004) 139148.10.1016/j.ultramic.2004.05.006Search in Google Scholar PubMed

[16] T.B.Massalski: Handbook of Ternary Diagrams, ASM. International, 1995, 31613162.Search in Google Scholar

Received: 2008-6-2
Accepted: 2009-2-26
Published Online: 2013-06-11
Published in Print: 2009-11-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Multiscale materials simulation: the maturing of a scientific concept
  5. Feature
  6. Atomistic modelling of materials with bond-order potentials
  7. Interstitial impurities at grain boundaries in metals: insight from atomistic calculations
  8. Multiscale modeling of polymers at interfaces
  9. Coupling atomistic accuracy with continuum effectivity for predictive simulations in materials research – the Quasicontinuum Method
  10. Basic
  11. Relative effects of Mo and B on ferrite and bainite kinetics in strong steels
  12. Experimental study of phase relations in the ZrO2–La2O3–Y2O3 system
  13. Surface tension of liquid Al–Cu binary alloys
  14. Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition
  15. A mesoscopic grain boundary sliding controlled flow model for superplasticity in intermetallics
  16. Molten salt synthesis and phase evolution of Ba(Cd1/3Nb2/3)O3
  17. Applied
  18. Microstructure and properties of violin strings made of metastable austenitic steel
  19. Transformation of reverted austenite in a maraging steel under external loading: an in-situ X-ray diffraction study using high-energy synchrotron radiation
  20. Effect of heat treatment on the strain hardening behaviour of an Al–Zn–Mg alloy
  21. Ball milling as a possible means to produce zinc based coatings
  22. Size difference effects on the bulk, and surface properties of Bi–Zn, Cu–Pb, K–Pb and K–Tl liquid alloys
  23. Microstructure and mechanical properties of NiAl–Cr(Mo)–Hf/Ho near-eutectic alloy prepared by suction casting
  24. Investigation of fatigue fracture of generator-rotor fan blades
  25. Notifications
  26. Personal
Downloaded on 1.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110211/pdf
Scroll to top button