Startseite Technik 1D Models for Condensation Induced Water Hammer in Pipelines
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

1D Models for Condensation Induced Water Hammer in Pipelines

  • F. Blömeling , T. Neuhaus und A. Schaffrath
Veröffentlicht/Copyright: 22. August 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Condensation induced water hammer (CIWH) are caused by contact of steam and subcooled water. Thus, modeling the direct contact condensation is a crucial step towards the simulation of condensation induced water hammer with 1D pressure surge codes. Therefore, also the TÜV NORD SysTec GmbH & Co. KG inhouse pressure surge code DYVRO has been equipped with a new contact condensation model. The validation of DYVRO against an experiment dealing with CIWH is presented in this contribution.

Kurzfassung

Kondensationsschläge werden durch den Kontakt von Dampf und unterkühltem Wasser verursacht. Daher ist die Modellierung der Kontaktkondensation ein elementarer Schritt zur Berechnung von Kondensationsschlägen mit 1D-Druckstoßcodes. Dementsprechend wurde für den Druckstoßcode DYVRO, der bei der TÜV NORD SysTec GmbH & Co. KG entwickelt wird, ein neues Kontaktkondensationsmodell implementiert. Dessen Validierung gegen ein Kondensationsschlagexperiment soll im vorliegenden Beitrag vorgestellt werden.


4 Dr. rer. nat. Frank Blömeling, E-mail:

References

1 Neuhaus, T.; Schaffrath, A.; Altstadt, E.: Development and Validation of the Pressure Surge Computer Code DYVRO mod. 3. Kern73 (2008) 221Suche in Google Scholar

2 Neuhaus, T.; Schaffrath, A.; Jerinic, D.: The Pressure Surge Com. 3: Modelling and Validation. The 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13), Kanazawa City, Ishikawa Prefecture, Japan, September 27-October 2, 2009Suche in Google Scholar

3 Neuhaus, T.; Schaffrath, A.; Ronneberger, R.; Altstadt, E.: Entwicklung und Validierung des Druckstoßprogramms DYVRO Mod. 3. International Journal for Nuclear Power, atw53 (2008)Suche in Google Scholar

4 GRS mbH: ATHLET Mod 2.2 Cycle A. User's Manual (Rev.5), July 2006Suche in Google Scholar

5 Neuhaus, T.; Schaffrath, A.: Tripartite Mass Transfer Model: Development, Implementation in DYVRO, Verification and Validations. The 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14), Toronto, Ontario, Kanada, September 25–30, 2011Suche in Google Scholar

6 Block, J. A.; Rothe, P. H.; Crowley, C. J.; Wallis, G. B.: An Evaluation of PWR Steam Generator water hammer., NUREG-0291, 1976Suche in Google Scholar

7 Higbie, R.: The Rate of Absorption of a Pure Gas Into a Still Liquid During a Short Time of Exposure. Transactions of the American Institute of Chemical Engineers31 (1935) 365Suche in Google Scholar

8 Hughes, E. D.; Duffey, R. B.: Direct Contact Condensation and Momentum Transfer in Turbulent Separated Flows. Int. J. Multiphase Flow17 (1991) 599Suche in Google Scholar

9 Shen, L.; Triantafyllou, G. S.; Yue, K. P. D.: Turbulent diffusion near a free surface. J. Fluid Mech.407 (2000) 145Suche in Google Scholar

10 Ceuca, C. S.; Macián-Juan, R.: Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers. KERNTECHNIK78 (2013) KT11030710.3139/124.110307Suche in Google Scholar

Received: 2012-11-26
Published Online: 2013-08-22
Published in Print: 2013-03-19

© 2013, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Actual status of the research alliances “Condensation Induced Water Hammer” and “Boiling processes in Pressurized Water Reactors”
  7. Technical Contributions/Fachbeiträge
  8. High-resolution two-phase flow measurement techniques for the generation of experimental data for CFD code qualification
  9. Condensation induced water hammer (CIWH) – relevance in the nuclear industry and state of science and technology
  10. Experiments of condensation-induced water hammers at the UniBw Munich
  11. Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers
  12. 1D Models for Condensation Induced Water Hammer in Pipelines
  13. Modelling, simulation and experiments on boiling processes in pressurized water reactors
  14. CFD analysis of a void distribution benchmark in a rod bundle
  15. CFD-modelling of subcooled boiling
  16. On the pair correlation function in a bubble swarm
  17. Large Eddy Simulation of the shear flow instability in a rod-bundle assembly
  18. Small scale boiling experiments using two-dimensional imaging with high-speed camera and optical coherence tomography
  19. Validation of mechanistic CHF models using optical measuring techniques
  20. Experimental investigations of single and two-phase flow in a heated rod bundle
  21. CFD-Modeling of turbulent flows in rod bundle and comparison to experiments
  22. About the change in boiling behaviour of water with coolant additives in PWR
  23. Simulation of external reactor vessel cooling in a lumped-parameter code
Heruntergeladen am 14.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110308/pdf?lang=de
Button zum nach oben scrollen