Experimental investigations of single and two-phase flow in a heated rod bundle
-
F. Barthel
, R. Franz und U. Hampel
Abstract
An experimental facility for the study of boiling flows in a 3 × 3 rod bundle geometry was setup. The bundle resembles in essential geometrical parts the geometry in a pressurized water reactor fuel element. The facility is operated with a refrigerant fluid. Beside standard instrumentation for temperature, pressure and flow rate we employed particle image velocimetry for single phase flow studies, gamma ray densitometry for integral gas fraction measurement sand ultrafast X-ray tomography for the study of the void dynamics in the cross-section. Moreover extensive thermo-instrumentation allows axial rod surface temperature measurements for the central heated rod. First results will be discussed in this article.
Kurzfassung
Ein Versuchsstand zur Untersuchung von Strömungssieden in einer 3 × 3 Stabbündelgeometrie wurde am HZDR aufgebaut. Dabei werden geometrisch die Verhältnisse in einem Druckwasserreaktor-Brennelement nachgebildet. Der Versuchsstand wird mit einem Kältemittel betrieben. Neben der Standardinstrumentierung für Fluidtemperatur, Druck und Durchfluss ist die Anwendung der Particle Image Velocimetry für die Vermessung einphasiger Strömungsfelder, die Gammadensitometrie zur integralen Gasgehaltsmessung sowie die ultraschnelle Röntgentomographie zur Aufklärung dynamischer Vorgänge im Bündel vorgesehen. Weiterhin verfügt der Versuch über extensive Thermoinstrumentierung zur Messung von Wandtemperaturen des beheizten zentralen Stabes. Ergebnisse der Anwendung dieser Messmethoden liegen vor und werden in diesem Beitrag vorgestellt und diskutiert.
References
1 Akiyama, Y.; Hori, K.; Miyazaki, K.; Nishioka, H.: Sugiyama, Pressurized water reactor fuel assembly sub-channel void fraction measurement. Nucl. Technol.112 (1995) 412–421Suche in Google Scholar
2 InoueA.; Kurosu, T.; Mitsutake, T.: Void fraction distribution in a boiling water reactor fuel assembly and the evaluation of subchannel analysis code. Nucl. Technol.112 (1995) 388–400Suche in Google Scholar
3 Anklam, T. M.; MillerR.F.: Void fraction under high pressure, low flow conditions in rod bundle geometry. Nucl. Eng. Des.75 (1982) 99–10810.1016/0029-5493(83)90083-3Suche in Google Scholar
4 Buell, J. R.; Byskal, D. P.; Desrosiers, M. R.; Hussein, E. M. A.; Ingham, P. J.; Swartz, R. S.: A neutron scatterometer for void-fraction measurement in heated rod-bundle channels under CANDU LOCA conditions. Int. J. Multiphas. Flow31 (2005) 452–472Suche in Google Scholar
5 Harvel, G. D.; Chang, J. S.; Krishnan, V.S.: Investigation of large amplitude stratified waves in a CANDU-type 37 rod nuclear fuel channel by a real-time neutron radiography technique. Nucl. Eng. Des.200 (2000) 221–231Suche in Google Scholar
6 Kok, H. V.; van der Hagen, T. H. J. J.; Mudde, R. F.: Subchannel void-fraction measurements in a 6 × 6 rod bundle using a simple gamma-transmission method. Int. J. Multiphas. Flow27 (2001) 147–170Suche in Google Scholar
7 Kumamaru, H.; Kondo, M.; Murata, H.; Kukita, Y.: Void-fraction distribution under high-pressure boil-off conditions in rod bundle geometry. Nucl. Eng. Des.150 (1994) 95–105Suche in Google Scholar
8 Morooka, S.; Ishizuka, T.; Iizuka, M.; Yoshimura, K.: Experimental study on void fraction in a simulated BWR fuel assembly. Nucl. Eng. Des.114 (1989) 91–98Suche in Google Scholar
9 Takenaka, N.; Asano, H.: Quantitative CT-reconstruction of void fraction distributions in two-phase flow by neutron radiography. Nucl. Instrum. Meth. A542 (2005) 387–391Suche in Google Scholar
10 Ylonen, A.; Bissels, W. M.; Prasser, H. M.: Single-phase cross-mixing measurements in a 4 × 4 rod bundle. Nucl. Eng. Des.241 (2011) 2484–2493Suche in Google Scholar
11 Duhar, G.; Riboux, G.; Colin, C.: Vapour bubble growth and detachment at the wall of shear flow. Heat and mass transfer45 (2009) 847–855Suche in Google Scholar
12 Canaan, R. E.; Klein, D. E.: A numerical investigation of natural convection heat transfer within horizontal spent-fuel assemblies. Nuclear Technology123 (1998) 193–208Suche in Google Scholar
13 Dominguez-Ontiverosi, E; Hassan, Y. A.; Franz, R.; Barthel, F.; HampelU.: Experimental Study of a Simplified 3 × 3 Rod Bundle using DPTV. CFD4NRS4 Workshop, Daejeon, Korea, 10–12 September 2012Suche in Google Scholar
14 Kak, A.; Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York, 1988Suche in Google Scholar
15 Fischer, F.; et al.: An ultrafast electron beam x-ray tomography scanner. Measurement Science and Technology19 (2008) 094002Suche in Google Scholar
16 Bloch, G.; Loth, J.; Bruder, M.; Sattelmayer, T.: Effects of Turbulence and Longitudinal Vortices on Vapor Distribution and Heat Fluxes in Subcooled Flow Boiling. Proceedings of ECI 8th Boiling and Condensation, Lausanne, Switzerland, 2012Suche in Google Scholar
© 2013, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Actual status of the research alliances “Condensation Induced Water Hammer” and “Boiling processes in Pressurized Water Reactors”
- Technical Contributions/Fachbeiträge
- High-resolution two-phase flow measurement techniques for the generation of experimental data for CFD code qualification
- Condensation induced water hammer (CIWH) – relevance in the nuclear industry and state of science and technology
- Experiments of condensation-induced water hammers at the UniBw Munich
- Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers
- 1D Models for Condensation Induced Water Hammer in Pipelines
- Modelling, simulation and experiments on boiling processes in pressurized water reactors
- CFD analysis of a void distribution benchmark in a rod bundle
- CFD-modelling of subcooled boiling
- On the pair correlation function in a bubble swarm
- Large Eddy Simulation of the shear flow instability in a rod-bundle assembly
- Small scale boiling experiments using two-dimensional imaging with high-speed camera and optical coherence tomography
- Validation of mechanistic CHF models using optical measuring techniques
- Experimental investigations of single and two-phase flow in a heated rod bundle
- CFD-Modeling of turbulent flows in rod bundle and comparison to experiments
- About the change in boiling behaviour of water with coolant additives in PWR
- Simulation of external reactor vessel cooling in a lumped-parameter code
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Actual status of the research alliances “Condensation Induced Water Hammer” and “Boiling processes in Pressurized Water Reactors”
- Technical Contributions/Fachbeiträge
- High-resolution two-phase flow measurement techniques for the generation of experimental data for CFD code qualification
- Condensation induced water hammer (CIWH) – relevance in the nuclear industry and state of science and technology
- Experiments of condensation-induced water hammers at the UniBw Munich
- Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers
- 1D Models for Condensation Induced Water Hammer in Pipelines
- Modelling, simulation and experiments on boiling processes in pressurized water reactors
- CFD analysis of a void distribution benchmark in a rod bundle
- CFD-modelling of subcooled boiling
- On the pair correlation function in a bubble swarm
- Large Eddy Simulation of the shear flow instability in a rod-bundle assembly
- Small scale boiling experiments using two-dimensional imaging with high-speed camera and optical coherence tomography
- Validation of mechanistic CHF models using optical measuring techniques
- Experimental investigations of single and two-phase flow in a heated rod bundle
- CFD-Modeling of turbulent flows in rod bundle and comparison to experiments
- About the change in boiling behaviour of water with coolant additives in PWR
- Simulation of external reactor vessel cooling in a lumped-parameter code