Home Technology Validation of mechanistic CHF models using optical measuring techniques
Article
Licensed
Unlicensed Requires Authentication

Validation of mechanistic CHF models using optical measuring techniques

  • G. Bloch and T. Sattelmayer
Published/Copyright: August 22, 2013
Become an author with De Gruyter Brill

Abstract

Critical heat flux (CHF) is an important effect in boiling heat transfer, but the effects causing it still remain to be fully understood. An overview of current mechanistic CHF models is presented, and experiments for validation are discussed.

Kurzfassung

Die kritische Wärmestromdichte (critical heat flux, CHF) ist ein wichtiger Effekt bei der Wärmeübertragung durch Sieden, dessen Ursachen bislang noch nicht vollständig geklärt sind. Ein Überblick über aktuelle mechanistische Modelle zum CHF wird vorgestellt und Experimente zur Validierung der Modellannahmen diskutiert.

References

1 Collier, J. G.; ThomeJ.R.: Convective Boiling and Condensation. Oxford University Press, third edition (1994)Search in Google Scholar

2 Gersey, C. O.; Mudawar, I.: Effects of Heater Length and Orientation on the Trigger Mechanism for Near-Saturated Flow Boiling Critical Heat Flux-II. Critical Heat Flux Model. Int. J. Heat Mass Transfer38 (1995) 643654Search in Google Scholar

3 Celata, G. P.; Cumo, M.; Mariani, A.; Simoncini, M.; Zummo, G.: Rationalization of Existing Mechanistic Models for the Prediction of Water Subcooled Flow Boiling Critical Heat Flux. Int. J. Heat Mass Transfer37 (1994) 347360Search in Google Scholar

4 Kandlikar, S.G.: Critical Heat Flux in Subcooled Flow Boiling-an Assessment of Current Understanding and Future Directions for Research. Multiphase Science and Technology13 (2001) 207232Search in Google Scholar

5 Hebel, W.; Detavernier, W., Decreton, M.: A Contribution to the Hydrodynamics of Boiling Crisis in a Forced Flow of Water. Nuclear Engineering and Design64 (1981) 433445Search in Google Scholar

6 Hebel, W.; Detavernier, W.: On the Velocity Profile of Vapour Bubbles at Critical Heat Flux. Nuclear Engineering and Design74 (1982) 253257Search in Google Scholar

7 Weisman, J.; Pei, B. S.: Prediction of Critical Heat Flux in Flow Boiling at low Qualities. Int. J. Heat Mass Transfer26 (1983) 14631477Search in Google Scholar

8 Ying, S. H.; Weisman, J.: Prediction of Critical Heat Flux in Flow Boiling at Intermediate Qualities. Int. J. Heat Mass Transfer29 (1986) 16391648Search in Google Scholar

9 Lim, J. C.; Weisman, J.: A Phenomenologically Based Prediction of the Critical Heat Flux in Channels Containing an Unheated Wall. Int. J. Heat Mass Transfer33 (1990) 203205Search in Google Scholar

10 Weisman, J.; Yang, J. Y.; Usman, S.: A Phenomenological Model for Boiling Heat Transfer and the Critical Heat Flux in Tubes Containing Twisted Tapes. Int. J. Heat Mass Transfer37 (1994) 6980Search in Google Scholar

11 Galloway, J.; Mudawar, I.: CHF Mechanism in Flow Boiling From a Short Heated Wall — I. Examination of Near-Wall Conditions With the aid of Photomicrography and High-Speed Video Imaging. Int. J. Heat Mass Transfer36 (1993) 25112526Search in Google Scholar

12 Galloway, J.; Mudawar, I.: CHF Mechanism in Flow Boiling From a Short Heated Wall — II. Theoretical CHF Model. Int. J. Heat Mass Transfer36 (1993) 25272540Search in Google Scholar

13 Zhang, Hui,; Mudawar, I.; Hasan, M. M.: Investigation of Interfacial Behavior During the Flow Boiling CHF Transient. International Journal of Heat and Mass Transfer47 (2004) 12751288Search in Google Scholar

14 Zhang, H.; Mudawar, I.; Hasan, M. M.: Photographic Study of High-Flux Subcooled Flow Boiling and Critical Heat Flux. International Communications in Heat and Mass Transfer34 (2007) 653660Search in Google Scholar

Received: 2012-11-12
Published Online: 2013-08-22
Published in Print: 2013-03-19

© 2013, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Actual status of the research alliances “Condensation Induced Water Hammer” and “Boiling processes in Pressurized Water Reactors”
  7. Technical Contributions/Fachbeiträge
  8. High-resolution two-phase flow measurement techniques for the generation of experimental data for CFD code qualification
  9. Condensation induced water hammer (CIWH) – relevance in the nuclear industry and state of science and technology
  10. Experiments of condensation-induced water hammers at the UniBw Munich
  11. Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers
  12. 1D Models for Condensation Induced Water Hammer in Pipelines
  13. Modelling, simulation and experiments on boiling processes in pressurized water reactors
  14. CFD analysis of a void distribution benchmark in a rod bundle
  15. CFD-modelling of subcooled boiling
  16. On the pair correlation function in a bubble swarm
  17. Large Eddy Simulation of the shear flow instability in a rod-bundle assembly
  18. Small scale boiling experiments using two-dimensional imaging with high-speed camera and optical coherence tomography
  19. Validation of mechanistic CHF models using optical measuring techniques
  20. Experimental investigations of single and two-phase flow in a heated rod bundle
  21. CFD-Modeling of turbulent flows in rod bundle and comparison to experiments
  22. About the change in boiling behaviour of water with coolant additives in PWR
  23. Simulation of external reactor vessel cooling in a lumped-parameter code
Downloaded on 17.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/124.110315/html
Scroll to top button