CFD-modelling of subcooled boiling
-
E. Krepper
, R. Rzehak , C. Lifante und Th. Frank
Abstract
In this paper new developments in the framework of a common project simulating subcooled boiling are described. The computational model used combines the Euler/Euler two-phase flow description with heat flux partitioning. Main achievements were a comprehensive study of the boiling process itself and a better description of the interfacial area by coupling of wall boiling with a population balance model. The model extensions are validated and the present capabilities of CFD for wall boiling are investigated.
Kurzfassung
In der vorliegenden Arbeit werden im Rahmen eines gemeinsamen Projektes entwickelten Erweiterungen der CFD-Modellierung von unterkühltem Sieden beschrieben. Das Konzept geht von der Euler/Euler-Beschreibung in Kombination mit der Aufteilung des Wärmestromes an der Wand auf die verschiedenen Mikroprozesse aus. Hauptergebnisse waren eine umfangreiche Untersuchung des Siedeprozesses selbst sowie eine genauere Beschreibung der Zwischenphasengrenzfläche durch Kopplung des Wandsiedemodells mit einem Populationsmodell. Die Modellerweiterungen wurden validiert und in der Arbeit werden die aktuellen Möglichkeiten der CFD-Modellierung von Wandsieden dargestellt.
References
1 KurulN.; PodowskiM.: On the modeling of multidimensional effects in boiling channels. ANS Proceedings of 27th National Heat Transfer Conference, Minneapolis, MN 1991Suche in Google Scholar
2 BartolomejG. G.; ChanturiyaV. M.: Experimental study of true void fraction when boiling subcooled water in vertical tubes. Thermal Engineering14 (1967) 123–128 translated from Teploenergetika 14 (1967) 80–83Suche in Google Scholar
3 KrepperE.; KoncarB.; EgorovY.: Modelling of subcooled boiling-conceptvalidation and application to fuel assembly design. Nuclear Engineering and Design237 (2007) 716–731Suche in Google Scholar
4 GarnierJ.; ManonE.; CubizollesG.: Local measurements on flow boiling of refrigerant 12 in a vertical tube. Multiphase Science and Technology13 (2001) 1–111Suche in Google Scholar
5 KrepperE.; RzehakR.: CFD for subcooled flow boiling: Simulation of DEBORA experiments. Nuclear Engineering and Design241 (2011) 3851–3866Suche in Google Scholar
6 KrepperE.; RzehakR.; LifanteC.; FrankT.: CFD for subcooled flow boiling: Coupling wall boiling and population balance models. Nuclear Engineering and Design255 (2013) 330–346Suche in Google Scholar
7 LoS.: Recent advances in CFD for industrial multiphase flows. Industrial CFD and the Move Towards Multiphase Flow Simulations, 8 Nov 2000, University of WarwickSuche in Google Scholar
8 FrankT.; ZwartP.; KrepperE.; PrasserH.-M.; LucasD.: Validation of CFD models for mono- and polydisperse air-water two-phase flows in pipes. Nuclear Engineering and Design238 (2008) 647–659Suche in Google Scholar
9 KrepperE.; LucasD.; FrankT.; PrasserH.-M.; ZwartP.: The inhomogeneous MUSIG model for the simulation of polydispersed flows. Nuclear Engineering and Design238 (2008) 1690–1702Suche in Google Scholar
10 LucasD.; PrasserH.-M.: Steam bubble condensation in sub-cooled water in case of co-current vertical pipe flow. Nuclear Engineering and Design237 (2007) 497–508Suche in Google Scholar
11 LifanteC.; ReitererF.; FrankTh.; BurnsA.: Coupling of wall. The 14th International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-14, Toronto, Ontario, Canada, September 25-30, 2011, NURETH14-087Suche in Google Scholar
12 MenterF.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA-Journal32 (1994) 1598–1605Suche in Google Scholar
13 SatoY.; SadatomiM.; SekoguchiK.: Momentum and heat transfer in two-phase bubble flow-I. Int. J. of Multiphase Flow7 (1981) 167–177Suche in Google Scholar
14 PolitanoM.; CarricaP.; ConvertiJ.: A model for turbulent polydisperse two-phase flow in vertical channels. International Journal of Multiphase Flow29 (2003) 115310.1016/S0301-9322(03)00065-XSuche in Google Scholar
15 RzehakR.; KrepperE.: CFD for subcooled flow boiling: Parametric Variations. Science and Technology of Nuclear Installations, acceptedSuche in Google Scholar
16 PrinceM. J.; BlanchH. W.: Bubble coalescence and break-up in air-sparged bubble columns. AIChEJ36 (1990) 1485–1499Suche in Google Scholar
17 LuoH.; SvendsenH. F.: Theoretical model for drop and bubble break-up in turbulent flows. AIChEJ42 (1996) 1225–1233Suche in Google Scholar
18 ZunI.: The transverse migration of bubbles influenced by walls in vertical bubbly flow. Int. J. Multiphase Flow (1980) 583–588Suche in Google Scholar
19 TomiyamaA.; TamaiH.; ZunI.; HosokawaS.: Transverse migration of single bubbles in simple shear flows. Chemical Engineering Science57 (2002) 1849–1858Suche in Google Scholar
20 SchmidtkeM.: Investigation of the dynamics of fluid particles using the Volume of Fluid Method. PhD-Thesis University Paderborn, 2008 (in German)Suche in Google Scholar
© 2013, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Actual status of the research alliances “Condensation Induced Water Hammer” and “Boiling processes in Pressurized Water Reactors”
- Technical Contributions/Fachbeiträge
- High-resolution two-phase flow measurement techniques for the generation of experimental data for CFD code qualification
- Condensation induced water hammer (CIWH) – relevance in the nuclear industry and state of science and technology
- Experiments of condensation-induced water hammers at the UniBw Munich
- Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers
- 1D Models for Condensation Induced Water Hammer in Pipelines
- Modelling, simulation and experiments on boiling processes in pressurized water reactors
- CFD analysis of a void distribution benchmark in a rod bundle
- CFD-modelling of subcooled boiling
- On the pair correlation function in a bubble swarm
- Large Eddy Simulation of the shear flow instability in a rod-bundle assembly
- Small scale boiling experiments using two-dimensional imaging with high-speed camera and optical coherence tomography
- Validation of mechanistic CHF models using optical measuring techniques
- Experimental investigations of single and two-phase flow in a heated rod bundle
- CFD-Modeling of turbulent flows in rod bundle and comparison to experiments
- About the change in boiling behaviour of water with coolant additives in PWR
- Simulation of external reactor vessel cooling in a lumped-parameter code
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Actual status of the research alliances “Condensation Induced Water Hammer” and “Boiling processes in Pressurized Water Reactors”
- Technical Contributions/Fachbeiträge
- High-resolution two-phase flow measurement techniques for the generation of experimental data for CFD code qualification
- Condensation induced water hammer (CIWH) – relevance in the nuclear industry and state of science and technology
- Experiments of condensation-induced water hammers at the UniBw Munich
- Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers
- 1D Models for Condensation Induced Water Hammer in Pipelines
- Modelling, simulation and experiments on boiling processes in pressurized water reactors
- CFD analysis of a void distribution benchmark in a rod bundle
- CFD-modelling of subcooled boiling
- On the pair correlation function in a bubble swarm
- Large Eddy Simulation of the shear flow instability in a rod-bundle assembly
- Small scale boiling experiments using two-dimensional imaging with high-speed camera and optical coherence tomography
- Validation of mechanistic CHF models using optical measuring techniques
- Experimental investigations of single and two-phase flow in a heated rod bundle
- CFD-Modeling of turbulent flows in rod bundle and comparison to experiments
- About the change in boiling behaviour of water with coolant additives in PWR
- Simulation of external reactor vessel cooling in a lumped-parameter code