Home Technology High-resolution two-phase flow measurement techniques for the generation of experimental data for CFD code qualification
Article
Licensed
Unlicensed Requires Authentication

High-resolution two-phase flow measurement techniques for the generation of experimental data for CFD code qualification

  • U. Hampel , E. Krepper , D. Lucas , M. Beyer , L. Szalinski , M. Banowski , F. Barthel , D. Hoppe , A. Bieberle and T. Barth
Published/Copyright: August 22, 2013
Become an author with De Gruyter Brill

Abstract

Computational fluid dynamics simulations for two-phase flows are important in different fields of engineering and science. Since two-phase flows are inherently complex, also CFD modeling development requires special attention. The validation of model implementation and the derivation of physics based models for momentum, heat, and mass transfer in two-phase flow require experiments with generation of high-resolution measurement data. This, however, is a great challenge, since most standard flow measurement tools used in single phase flow situations, are not suited for multiphase flows. In this article we report on advanced imaging and measuring methods for two-phase flow experiments, which have been extensively used in the recent past to conduct experiments for two-phase flows at the Helmholtz-Zentrum Dresden-Rossendorf. In particular the application of wire-mesh sensors, ultrafast X-ray tomography, gamma ray tomography and positron emission tomography will be introduced and discussed.

Kurzfassung

Numerische Strömungssimulationen (CFD) für Zweiphasenströmungen sind für verschiedene Bereiche in Technik und Wissenschaft von großer Bedeutung. Da Zweiphasenströmungen inhärent komplex sind, gestaltet sich auch die CFD-Modellierung entsprechend schwierig. Insbesondere die Modellvalidierung, aber auch die Entwicklung von physikalischen Modellen für Impuls-, Wärme- und Stofftransport in Zweiphasenströmungen erfordert spezielle Experimente mit Strömungsmessdaten mit hoher zeitlicher und räumlicher Auflösung. Dies stellt jedoch eine große Herausforderung dar, da die meisten Messverfahren, welche für Einphasenströmungen heutzutage genutzt werden, für Mehrphasenströmungen nicht geeignet sind. In diesem Beitrag werden fortgeschrittene bildgebende Messverfahren für Zweiphasenströmungen vorgestellt, welche in der jüngeren Vergangenheit am Helmholtz-Zentrum Dresden-Rossendorf maßgeblich entwickelt und für experimentelle Studien qualfiziert und eingesetzt wurden. Insbesondere werden die Gittersensortechnik, die ultraschnelle Röntgentomographie, die Gammastrahlentomographie und die Positronenemissionstomographie beleuchtet.


11 Prof. Dr. Uwe Hampel, E-mail: , Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden

References

1 Lemonnier, H.: Multiphase instrumentation: The keystone of multidimensional multiphase flow modeling. Experimental Thermal and Fluid Science15 (1997) 15416210.1016/S0894-1777(97)00023-XSearch in Google Scholar

2 Prasser, H. M.: Novel experimental measuring techniques required to provide data for CFD validation. Nuclear Engineering and Design238 (2008) 744770Search in Google Scholar

3 Frank, T.; Zwart, P.; Krepper, E.; Prasser, H.-M.; Lucas, D.: Validation of CFD models for mono- and polydisperse air-water two-phase flows in pipes. Nuclear Engineering and Design238 (2008) 647659Search in Google Scholar

4 Lucas, D.; Krepper, E.; Prasser, H.-M.: Modeling of the evolution of bubbly flow along a large vertical pipe. Nuclear Technology158 (2007) 291303Search in Google Scholar

5 Azzopardi, B. J.: Gas-liquid flows. Begell House, 200610.1016/S0301-9322(99)00036-1Search in Google Scholar

6 Prasser, H.-M.; Beyer, M.; Carl, H.; Manera, A.; Pietruske, H.; Schütz, P.; Weiß, F.-P.: The multipurpose thermalhydraulic test facility TOPFLOW: an overview on experimental capabilities, instrumentation and results. Kerntechnik71 (2006) 163173Search in Google Scholar

7 Vallée, C.; Seidel, T.; Lucas, D.; Beyer, M.; Prasser, H.-M.; Pietruske, H.; Schütz, P.; Carl, H.: Counter-current flow limitation in a model of the hot leg of a PWR-comparison between air/water and steam/water experiments. Nuclear Engineering and Design245 (2012) 113124Search in Google Scholar

8 Prasser, H.-M.; Böttger, A.; Zschau, J.: A new electrode-mesh tomograph for gas-liquid flows. Flow Measurement and Instrumentation9 (1998) 111119Search in Google Scholar

9 Prasser, H.-M.; Scholz, D.; Zippe, C.: Bubble size measurement using wire-mesh sensors. Flow Measurement and Instrumentation12 (2001) 299312Search in Google Scholar

10 Da Silva, M. J.; Schleicher, E.; Hampel, U.: Capacitance wire-mesh sensor for fast measurement of phase fraction distributions. Measurement Science and Technology18 (2007) 22452251Search in Google Scholar

11 Prasser, H.-M.; Krepper, E.; Lucas, D.: Evolution of the two-phase flow in a vertical tube-decomposition of gas fraction profiles according to bubble size classes using wire-mesh sensors. International Journal of Thermal Sciences41 (2002) 1728Search in Google Scholar

12 Prasser, H.-M.; Beyer, M.; Böttger, A.; Carl, H.; Lucas, D.; Schaff: Influence of the pipe152 (2005) 322Search in Google Scholar

13 Manera, A.; Lucas, D.; Prasser, H.-M.: Experimental investigation on bubble turbulent diffusion in a vertical large-diameter pipe by wire-mesh sensors and correlation techniques. Nuclear Technology158 (2007) 275290Search in Google Scholar

14 Prasser, H.-M.: Evolution of interfacial area concentration in a vertical air-water flow measured by wire-mesh sensors. Nuclear Engineering and Design237 (2007) 16081617Search in Google Scholar

15 Omebere-Iyari, N. K.; Azzopardi, B. J.; Lucas, D.; Beyer, M.; Prasser, H.-M.: Gas/liquid flow in large risers. International Journal of Multiphase Flow34 (2008) 46147610.1016/j.ijmultiphaseflow.2007.11.001Search in Google Scholar

16 Perez, V. H.; Azzopardi, B. J.; Kaji, R.; Da Silva, M. J.; Beyer, M.; Hampel, U.: Wisp-like structures in vertical gas-liquid pipe flow revealed by wire mesh sensor studies. International Journal of Multiphase Flow36 (2010) 908915Search in Google Scholar

17 Manera, A.; Ozar, B.; Paranjape, S.; Ishii, M.; Prasser, H.-M.: Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters. Nuclear Engineering and Design239 (2009) 17181724Search in Google Scholar

18 Da Silva, M. J.; Thiele, S.; Abdulkareem, L.; Azzopardi, B. J.; Hampel, U.: High-resolution gas-oil two-phase flow visualization with a capacitance wire-mesh sensor. Flow Measurement and Instrumentation21 (2010) 191197Search in Google Scholar

19 Szalinski, L.; Da Silva, M. J.; Thiele, S.; Beyer, M.; Lucas, D.; Hampel, U.; Hernandez Perez, V.; Abdulkareem, L. A.; Azzopardi, B. J.: Comparative study of gas-oil and gas-water two-phase flow in a vertical pipe. Chemical Engineering Science65 (2010) 38363848Search in Google Scholar

20 Pietruske, H.; Prasser, H.-M.: Wire-mesh sensors for high-resolving two-phase flow studies at high pressures and temperatures. Flow Measurement and Instrumentation18 (2007) 8794Search in Google Scholar

21 Krepper, E.; Lucas, D.; Frank, T.; Prasser, H.-M.; Zwart, P.: The inhomogeneous MUSIG model for the simulation of polydispersed flows. Nuclear Engineering and Design238 (2008) 16901702Search in Google Scholar

22 Lucas, D.; Krepper, E.; Prasser, H.-M.: Use of models for lift, wall and turbulent dispersion forces acting on bubbles for poly-disperse flows. Chemical Engineering Science62 (2007) 4146415710.1016/j.ces.2007.04.035Search in Google Scholar

23 Krepper, E.; Beyer, M.; Lucas, D.; Schmidtke, M.: A population balance approach considering heat and mass transfer-experiments and CFD simulations. Nuclear Engineering and Design241 (2011) 28892897Search in Google Scholar

24 Liao, Y.; Lucas, D.; Krepper, E.; Schmidtke, M.: Development of a generalized coalescence and breakup closure for the inhomogeneous MUSIG model. Nuclear Engineering and Design241 (2011) 10241033Search in Google Scholar

25 Johansen, G. A.; Hampel, U.; Hjertaker, B. T.: Flow imaging by high speed transmission tomography. Applied Radiation and Isotopes68 (2010) 518524Search in Google Scholar

26 Fischer, F.; Hoppe, D.; Schleicher, E.; Mattausch, G.; Flaske, H.; Bartel, R.; Hampel, U.: An ultra fast electron beam x-ray tomography scanner. Measurement Science and Technology19 (2008) 094002Search in Google Scholar

27 Bieberle, M.; Barthel, F.; Hampel, U.: Ultrafast X-ray computed Chemical Engineering Journal189–190 (2012) 356363Search in Google Scholar

28 Hampel, U.; Bieberle, A.; Hoppe, D.; Kronenberg, J.; Schleicher, E.; Sühnel, T.; Zimmermann, F.; Zippe, C.: High resolution gamma ray tomography scanner for flow measurement and non-destructive testing applications. Review of Scientific Instruments78 (2007) 103704Search in Google Scholar

29 Hampel, U.; Hoppe, D.; Bieberle, A.; Kernchen, R.; Diele, K.-H.; Schleicher, E.; Da Silva, M. J.; Zippe, C.: Measurement of fluid distributions in a rotating fluid coupling using high resolution gamma ray tomography. Journal of Fluids Engineering-Transactions of the ASME130 (2008) 091402Search in Google Scholar

30 Bieberle, A.; Berger, R.; Yadav, R.; Schleicher, E.; Hampel, U.: Design of a modular signal processing board (MSPB) for gamma-ray imaging applications. Nuclear Instruments and Methods in Physics Research A663 (2011) 1421Search in Google Scholar

31 Bieberle, A.; Schleicher, E.; Hampel, U.: Temperature control design for a high-resolution gamma ray tomography detector. Review of Scientific Instruments81 (2010) 014702Search in Google Scholar

32 Bieberle, A.; Hoppe, D.; Schleicher, E.; Hampel, U.: Void measurement using high-resolution gamma-ray computed tomography. Nuclear Engineering and Design241 (2011) 20862092Search in Google Scholar

33 Seeger, O.; Knebel, K.; de Weerd, W.; Carbol, P.; Bottomley, D.; Rondinella, V.; Allelein, H. J.: Simulated accident testing of a fuel element from the HFR-EU1bis irradiation campaign. In 6th International Topical Meeting on High Temperature Reactor Technology, Toyko (2012)Search in Google Scholar

34 Hassan, Y. A.: Large eddy simulation in pebble bed gas cooled core reactors. Nuclear Engineering and Design238 (2008) 530537Search in Google Scholar

35 Hassan, Y. A.: Dominguez-Ontiveros, E. E.: Flow visualization in a pebble bed reactor experiment using PIV and refractive index matching techniques. Nuclear Engineering and Design238 (2008) 30803085Search in Google Scholar

36 Barth, T.; Ludwig, M.; Kulenkampff, J.; Gründig, M.; Bieberle, A.; Hampel, U.; Lippmann-Pipke, J.: PET measurements of liquid aerosol particle deposition in pebble beds. In 6th International Topical Meeting on High Temperature Reactor Technology, Tokyo (2012)Search in Google Scholar

37 Parker, D. J.; Leadbeater, T. W.; Fan, X.; Hausard, M. N.; Ingram, A.; Yang, Z.: Positron imaging techniques for process engineering: recent developments at Birmingham. Measurement Science and Technology19 (2008) 10.Search in Google Scholar

38 Lecrivain, G.; Hampel, U.: Influence of the Lagrangian integral time scale estimation in the near wall region on particle deposition. Journal of Fluids Engineering-Transactions of the ASME134 (2012) 074502Search in Google Scholar

39 Bieberle, M.; Hampel, U.; Barthel, F.; Menz, H.-J.; Mayer, H.-G.: 98 (2011), 03410110.1063/1.3534806Search in Google Scholar

40 Hampel, U.; Bärtling, Y.; Hoppe, D.; Kuksanov, N.; Fadeev, S.; Salimov, R.: Feasibility study for MeV electron beam tomography. Review of Scientific Instruments83 (2012) 093707Search in Google Scholar

Received: 2012-11-9
Published Online: 2013-08-22
Published in Print: 2013-03-19

© 2013, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Actual status of the research alliances “Condensation Induced Water Hammer” and “Boiling processes in Pressurized Water Reactors”
  7. Technical Contributions/Fachbeiträge
  8. High-resolution two-phase flow measurement techniques for the generation of experimental data for CFD code qualification
  9. Condensation induced water hammer (CIWH) – relevance in the nuclear industry and state of science and technology
  10. Experiments of condensation-induced water hammers at the UniBw Munich
  11. Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers
  12. 1D Models for Condensation Induced Water Hammer in Pipelines
  13. Modelling, simulation and experiments on boiling processes in pressurized water reactors
  14. CFD analysis of a void distribution benchmark in a rod bundle
  15. CFD-modelling of subcooled boiling
  16. On the pair correlation function in a bubble swarm
  17. Large Eddy Simulation of the shear flow instability in a rod-bundle assembly
  18. Small scale boiling experiments using two-dimensional imaging with high-speed camera and optical coherence tomography
  19. Validation of mechanistic CHF models using optical measuring techniques
  20. Experimental investigations of single and two-phase flow in a heated rod bundle
  21. CFD-Modeling of turbulent flows in rod bundle and comparison to experiments
  22. About the change in boiling behaviour of water with coolant additives in PWR
  23. Simulation of external reactor vessel cooling in a lumped-parameter code
Downloaded on 15.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/124.110301/html
Scroll to top button