Home Technology Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers
Article
Licensed
Unlicensed Requires Authentication

Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers

  • C. S. Ceuca and R. Macián-Juan
Published/Copyright: August 22, 2013
Become an author with De Gruyter Brill

Abstract

A Hybrid Heat Transfer Coefficient module has been developed based on two Surface Renewal Theory models using CFD simulations. The validation of the model has been done on a meso-scale computational grid for CFD simulations and on a macro-scale computational grid for System Code analysis. The CFD simulation was performed for a stratified co-current two phase flow between saturated steam and sub-cooled water while the System Code analysis was performed for a Condensation Induced Water Hammer experiment.

Kurzfassung

Die Entwicklung eines Hybrid-Moduls zur Berechnung des Wärmeübergangskoeffizienten, basierend auf zwei Oberflächenerneuerungsmodellen, wird vorgestellt. Der Validierungsvorgang umfasst einen Vergleich der Ergebnisse auf zwei verschiedenen Rechengitterskalen; einer Meso- und einer Makroskala, im Falle der CFD Rechnungen bzw. des Systemcodes. Die CFD Untersuchung wurde für eine stationäre, im Gleichstrom fließende Zweiphasenströmung zwischen Sattdampf und unterkühltem Wasser durchgeführt und mit lokalen Messwerten verglichen. Die Nachrechnung mit dem Systemcode bezieht sich auf ein Experiment mit Kondensationsschlägen und wurde mit dessen Messdaten verglichen.

References

1 Higbie, R.: The rate of absorption of a pure gas into a still liquid during a short time of exposure. Transactions of the American Institute of Chemical Engineers31 (1935) 365389Search in Google Scholar

2 Hughes, E. D.; Duffey, R. B.: Direct contact condensation and momentum transfer in turbulent separated flows. Int. J. Multiphase Flow17 (1991) 599619Search in Google Scholar

3 Kolev, N. I.: Multiphase Flow Dynamics I, II. SpringerThird Edition (2007)10.1007/3-540-69833-7Search in Google Scholar

4 Shen, L.; Triantafyllou, G. S.; Yue, K. P. D.: Turbulent diffusion near a free surface. J. Fluid Mech.407 (2000) 145166Search in Google Scholar

5 Banerjee, S.: A surface renewal model for interfacial heat and mass transfer in transient two-phase flow. Int. J. Multiphase Flow4 (1978) 571573Search in Google Scholar

6 Lerchl, G.; Austregesilo, H.: ATHLET Mod 2.2. Cycle A User's Manual. GRS-P-1/Vol. 1 Rev.5 (2009)Search in Google Scholar

7 Egorov, Y.; Boucker, M.; Martin, A.; Pigny, S.; Scheuerer, M.; Willemsen, S.: Validation of CFD codes with PTS-relevant test cases 5th EURATOM FRAMEWORK PROGRAMME 1998–2002 (2004)Search in Google Scholar

8 Ruile, H.; Karl, J.; Hein, D.: Kühlmittelerwärmung bei Direktkontaktkondensation an horizontalen Schichten und vertikalen Streifen zur Quantifizierung des druckbelasteten Thermoschocks. Technical report, BMFT-Forschungsvorhaben 1500906 Abschlußbericht, Lehrstuhl für Thermische Kraftanlagen, TU München, Germany (1995)Search in Google Scholar

9 Prasser, H. M.; Ézsöl, G.; Baranayai, G.: Water hammer tests, condensation caused by cold water injection into main steam-line of VVER-440-type PWR, Quick-Look Report (QLR). WAHALoads project deliverable D48, 2004Search in Google Scholar

10 Prasser, H. M.; Ézsöl, G.; Baranayai, G.: Water hammer tests, condensation caused by cold water injection into main steam-line of VVER-440-type PWR-Data Evaluation Report (DER). WAHALoads project deliverable D51, 2004Search in Google Scholar

Received: 2012-12-12
Published Online: 2013-08-22
Published in Print: 2013-03-19

© 2013, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Actual status of the research alliances “Condensation Induced Water Hammer” and “Boiling processes in Pressurized Water Reactors”
  7. Technical Contributions/Fachbeiträge
  8. High-resolution two-phase flow measurement techniques for the generation of experimental data for CFD code qualification
  9. Condensation induced water hammer (CIWH) – relevance in the nuclear industry and state of science and technology
  10. Experiments of condensation-induced water hammers at the UniBw Munich
  11. Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers
  12. 1D Models for Condensation Induced Water Hammer in Pipelines
  13. Modelling, simulation and experiments on boiling processes in pressurized water reactors
  14. CFD analysis of a void distribution benchmark in a rod bundle
  15. CFD-modelling of subcooled boiling
  16. On the pair correlation function in a bubble swarm
  17. Large Eddy Simulation of the shear flow instability in a rod-bundle assembly
  18. Small scale boiling experiments using two-dimensional imaging with high-speed camera and optical coherence tomography
  19. Validation of mechanistic CHF models using optical measuring techniques
  20. Experimental investigations of single and two-phase flow in a heated rod bundle
  21. CFD-Modeling of turbulent flows in rod bundle and comparison to experiments
  22. About the change in boiling behaviour of water with coolant additives in PWR
  23. Simulation of external reactor vessel cooling in a lumped-parameter code
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110307/html
Scroll to top button