Startseite Application of FactSage® thermodynamic modeling for predicting the ash transformation with temperatures under partial slagging entrained flow coal gasification condition
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Application of FactSage® thermodynamic modeling for predicting the ash transformation with temperatures under partial slagging entrained flow coal gasification condition

  • Sungkyu Lee , Bongjin Jung , Nayeon Lee , Wonjun Nam , Seung-Jong Lee und Yongseung Yun
Veröffentlicht/Copyright: 3. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ash fusion temperature determines suitability of coal for the entrained flow gasification/combustion process. For this, an Indonesian “Sehwa” coal sample and its acidic ash and slag constituents have been comprehensibly characterized via X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and inductively coupled plasma optical emission spectrometry (ICP-OES) methods. For assessment of environmental impact, leachate solution was also prepared from the discharged slag for ICP-OES analysis. The experimental data were comprehensively explained by ash fusion temperature and FactSage® thermochemical software and databases for understanding the thermodynamic fluidity properties of the coal ashes. More specifically, coal slagging behavior inside of the coal gasifier/combustor necessitated optimization of operational condition for subsequent mild slagging. The currently used coal gasification operation temperature range caused insufficient fraction of liquid available at 1200 to 1300 °C (19.7–20.1 bar). The metallic element-wise compositional analysis result via ICP-OES performed on the leachate solution therefrom excluded possibility of secondary environmental pollution from the discharged slag. This contribution continues the already published studies of the physicochemical characterization of slag waste from coal gasification syngas plants supplemented with FactSage® thermodynamic modeling results of coal gasification slag (SiO2–Al2O3–TiO2–Fe2O3–CaO–MgO–Na2O–K2O–P2O5–MnO–SO3). Besides, essentially similar experimental procedure to that employed in the already published studies was used to compare ash transformation and slagging behavior of the acidic coal feedstock.

Kurzfassung

Die Aschefusionstemperatur bestimmt die Eignung von Kohle für den Prozess der Flugstromvergasung. Hierfür wurde eine indonesische Probe der Sehwa-Kohle verwendet und ihre sauren Asche- und Schlackeinhalte mittels Röntgenfluoureszenz, Röntgendiffraktometrie und Rasterelektronenmikroskopie mit energiedispersiver Spektroskopie sowie induktiv gekoppelten Verfahren der Emissionsspektroskopie charakterisiert. Zur Abschätzung der Umweltfolgen wurden außerdem für die ICP-OES-Analyse eine entsprechende Lösung hergestellt. Die experimentellen Daten werden anhand der Aschefusionstemperatur erklärt sowie anhand der thermodynamischen Software und Datenbasis FactSage®, um die thermodynamischen Flüssigkeitseigenschaften der Kohleaschen zu verstehen. Das Kohleschlacke-Verhalten innerhalb des Kohlevergasers bzw. der Brennkammer machte die Optimierung der Betriebsbedingungen für eine nachfolgende schwache Verschlackung notwendig. Die bisher angewandte Kohlevergasungstemperatur verursachte einen ungeeigneten Anteil an Flüssigkeit bei 1200 bis 1300 °C und 19,7 bis 20,1 bar. Die metallische elementweise Analyse der Zusammensetzung mittels ICP-OES an der Lösung schloss von daher die Möglichkeit einer sekundären Umweltverschmutzung durch die abgeführte Schlacke aus. Der vorliegende Beitrag setzt die bereits veröffentlichten Studien der physikochemischen Charakterisierung des Schlackeabfalls (SiO2–Al2O3–TiO2–Fe2O3–CaO–MgO–Na2O–K2O–P2O5–MnO–SO3) aus Kohlevergasungsanlagen fort, die mit den Ergebnissen der thermodynamischen Modellierung mittels FactSage® fort. Darüber hinaus wurde eine ähnliche experimentelle Prozedur wie in den bereits veröffentlichten Studien angewandt, um das Ascheumwandlungs- und Verschlackungsverhalten von sauren Kohlebeschickungen zu vergleichen.


*Correspondence Address, Dr. Sungkyu Lee, Principal Engineer, Plant Engineering Division, Institute for Advanced Engineering, 175-28 Goan-ro 51 beon-gil, Yongin-si, 17180, South Korea, E-mail:

Dr. Sungkyu Lee, born 1959, received his BSc degree from Hanyang University of Seoul, South Korea, in 1982. He graduated with an MSc and PhD degree in Materials Science and Engineering from the University of Minnesota at Twin Cities, Minneapolis, Minnesota, USA, in 1991 and 1994, respectively. Now, he is working as a principal engineer at the Plant Engineering Division, Institute for Advanced Engineering, Yongin-si, Gyeonggi-do, South Korea.

Prof. Dr. Bongjin Jung, born 1956, received his BSc and MSc degrees in Chemical Engineering from Hanyang University of Seoul, South Korea, and Korea Advanced Institute of Science and Technology, Daejeon, South Korea in 1980 and 1983, respectively. His PhD was conferred in Energy & Environmental Engineering by Pennsylvania State University, University Park, Pennsylvania, USA, in 1990. He is currently Professor in the Department of Environmental and Energy Engineering, University of Suwon, Hwasung-si, Gyeonggi-do, South Korea.

Dr. Nayeon Lee, born 1974, received her BSc, MSc and PhD degrees in Environmental Engineering from the University of Suwon, Hwasung-si, South Korea, in 1997, 2007 and 2014, respectively. She is currently working as a senior principal researcher and team manager at the Center for Environmental and Clean Technologies, University of Suwon, Hwasung-si, Gyeonggi-do, South Korea.

Wonjun Nam, born 1982, received his BSc and MSc degrees in Environmental Engineering from the University of Suwon, Hwasung-si, South Korea, in 2007 and 2009, respectively. Now, he is working as an Assistant Manager at the Production Innovation Team, Daesang Corporation, Seoul, South Korea. In addition, he has successfully completed his PhD program at the University of Suwon, Hwasung-si, South Korea, except for submitting his dissertation.

Dr. Seung-Jong Lee, born 1966, received his BSc and MSc degrees in Chemistry and Organic Chemistry from Yonsei University, Seoul, South Korea, in 1988 and 1990, respectively. His PhD in Systems Engineering was conferred at Ajou University, Suwon, South Korea, in 2002. Now, he is working as a principal engineer at the Plant Engineering Division, Institute for Advanced Engineering, Yongin-si, Gyeonggi-do, South Korea.

Dr. Yongseung Yun, born 1957, received his BSc degree in Chemical Engineering from Yonsei University, Seoul, South Korea, in 1979. His MSc and PhD degrees were conferred in the field of Chemical Engineering at Korea Advanced Institute of Science and Technology, Daejeon, South Korea and the University of Utah, Salt Lake City, Utah, USA, in 1981 and 1990, respectively. He is currently working as Director at the Plant Engineering Division, Institute for Advanced Engineering, Yongin-si, Gyeonggi-do, South Korea.


References

1 A.Giuffrida, M. C.Romano, G.Lozza: Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up, Energy53 (2013), pp. 22122910.1016/j.energy.2013.02.007Suche in Google Scholar

2 C.-C.Cormos: Hydrogen and power co-generation based on coal and biomass/solid wastes co-gasification with carbon capture and storage, International Journal of Hydrogen Energy37 (2012), pp. 5637564810.1016/j.ijhydene.2011.12.132Suche in Google Scholar

3 http://www.flyash.info/2005/7ain.pdf, consulted February 26, 2016Suche in Google Scholar

4 www.waseda.jp/folaw/icl/.../A04408055-00-034020047.pdf, consulted May 30, 2016Suche in Google Scholar

5 J. G.Roessler, F. D.Olivera, S. J.Wasman, T. G.Townsend, M. C.McVay, C. C.Ferraro, N. I.Blaisi: Construction material properties of slag from the high temperature arc gasification of municipal solid waste, Waste Management52 (2016), pp. 16917910.1016/j.wasman.2016.03.031Suche in Google Scholar

6 B.Jung, S.-J.Lee, S.Lee, N.Lee, W.Nam, Y.Yun: Physico-chemical characterization of slag waste from coal gasification syngas plants: Effect of the gasification temperature on slag waste as construction material, Materials Testing59 (2017), pp. 78378910.3139/120.111072Suche in Google Scholar

7 A. Y.Ilyushechkin, D. G.Roberts, D.French, D. J.Harris: IGCC Solids Disposal and Utilisation (Final Report for ANLEC project 5-0710-0065), CSIRO, Australia, (2012)Suche in Google Scholar

8 J. C.van Dyk: Understanding the influence of acidic components (Si, Al, and Ti) on ash flow temperature of South African coal sources, Miner. Eng.19 (2006), pp. 28028610.1016/j.mineng.2005.06.018Suche in Google Scholar

9 E. T.Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, USA (1980)Suche in Google Scholar

10 P.Wang, M.Massoudi: Slag behavior in gasifiers – Part I: Influence of coal properties and gasification conditions, Energies6 (2013), pp. 78480610.3390/en6020784Suche in Google Scholar

11 www.flyash.info/2011/058-Ninomiya-2011.pdf, consulted October 7, 2016Suche in Google Scholar

12 H.Li, Y.Ninomiya, Z.Dong, M.Zhang: Application of the FactSage to predict the ash melting behavior in reducing conditions, Chinese J. Chem. Eng.14 (2006), pp. 78478910.1016/S1004-9541(07)60012-3Suche in Google Scholar

Published Online: 2018-07-03
Published in Print: 2018-02-02

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. SteBLife – A new short-time procedure for the calculation of S-N curves and failure probabilities
  5. Surface treatment for effective bonding in the sports industry
  6. Effect of different rotational speeds on mechanical and metallurgical properties of friction welded dissimilar steels
  7. Comparison of titanium and FGM dental implants with different coating types
  8. Weld quality and productivity of AISI 4140 steel welded by unpulsed and pulsed GMAW
  9. Corrosion behavior of Hastelloy® C–4® Ni–Cr–Mo–Fe alloys for coal gasification syngas plants
  10. Application of FactSage® thermodynamic modeling for predicting the ash transformation with temperatures under partial slagging entrained flow coal gasification condition
  11. Röntgen- und Neutronentomographie am knöchernen Innenohr der Bartenwale
  12. Partial repair of thermally sprayed and sealed corrosion protection – Organic coating material or thermal spraying?
  13. Experimental study on solidification of Cu(II)-contaminated soil using red mud with cement and Ca(OH)2
  14. Tribological study of sintered iron based and copper based brake materials by pin-on-disc method
  15. Influence of drilling parameters on temperature and surface roughness of AISI O2 steel
  16. Multi-fractal characteristics of particle size distribution of granular backfilling materials under different loads
  17. Dry sliding behavior of aluminum alloy 8011 with 4 % fly ash
  18. Optimization of the milling parameters for an Al/Si3N4 functionally graded composite using grey relational analysis
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111138/html?lang=de
Button zum nach oben scrollen