Startseite Partial repair of thermally sprayed and sealed corrosion protection – Organic coating material or thermal spraying?
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Partial repair of thermally sprayed and sealed corrosion protection – Organic coating material or thermal spraying?

  • Thomas Joachim Wilhelm und Christian Klesen
Veröffentlicht/Copyright: 3. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For many decades thermally sprayed corrosion protection systems on the basis of ZnAl or Al carry out their service for structures in coastal areas, the offshore sector, as CUI (corrosion protection under insulation) or anywhere, where the properties of thermally sprayed corrosion protection systems bring important advantages in terms of durability. A thermally sprayed corrosion protection system is about to protect the structure for 25 to 30 years against corrosion. During this time it may be damaged due to factors like construction work, improper handling or simple aging. There are many standards and regulations which describe the initial design of thermal spray systems, however, there cannot be found any information regarding repair. In particular, a mending of partial regions is hardly described. Specific repair instructions are rare and if present, they differ from one another. Overall there is a lack of knowledge of the proper procedures for partial repair of thermally sprayed coating systems. This project was concerned with tangible corrosion technical issues of the coating repairs: How does the critical overlap area perform? Have organic coatings benefits? To what extent does a renewed damage affect the lifetime? The aim of this study was to develop practice relevant instructions for the repair of thermally sprayed duplex systems.

Kurzfassung

Thermisch gespritzte Korrosionsschutzsysteme auf der Basis von Zink-Aluminium oder Aluminium sind keine neue Erfindung. Seit vielen Jahrzenten leisten sie ihren Dienst an Bauwerken in Küstennähe, im Offshore-Bereich, als CUI (Corrosion Protection under Insulation) oder überall dort, wo die Eigenschaften thermisch gespritzter Korrosionsschutzsysteme wichtige Vorteile bezüglich der Lebensdauer bringen. Ein thermisch gespritztes Korrosionsschutzsystem soll das Bauwerk etwa 25 bis 30 Jahre gegen Korrosion schützen. In dieser Zeit kann es aufgrund vieler Faktoren, wie Bautätigkeit, unsachgemäße Behandlung oder einfache Alterung beschädigt werden. Es bestehen zwar einige Normen und Regelwerke, welche den Erstaufbau thermisch gespritzter Systeme beschreiben, jedoch geben sie zu Reparaturmöglichkeiten nur begrenzt Informationen. Insbesondere eine Ausbesserung von Teilbereichen ist kaum beschrieben. Konkrete Reparaturhinweise sind selten und falls vorhanden, weichen sie voneinander ab. Insgesamt fehlt es an Wissen über die richtige Vorgehensweise beim bereichsweisen Ausbessern thermisch gespritzter Korrosionsschutzsysteme. Das Projekt behandelte die konkreten korrosionstechnischen Fragestellungen: Wie verhält sich der kritische Überlappungsbereich? Haben organische Anstriche zur Ausbesserung thermischer Spritzschichten Vorteile? Inwieweit beeinträchtigt eine erneute Beschädigung das reparierte System? Das Ziel der Untersuchung war es, praxisrelevante Hinweise für die Reparatur thermisch gespritzter Duplexsysteme zu erarbeiten.


*Correspondence Address, Thomas Wilhelm, MEng., GSI Niederlassung SLV Duisburg, Bismarckstrasse 85, 47057 Duisburg, Germany, E-mail:

Thomas Joachim Wilhelm joined the GSI Gesellschaft für Schweißtechnik Int. – SLV Duisburg, Germany in 2011. In 2016, he completed his academic study (MEng) in the field of corrosion and surface technology. Since 2016, he has been working as a FROSIO inspector and deputy head of the competence center for failure analysis and prevention in the field of corrosion, failure analysis of high alloy steels, resistance spot welding of aluminum, thermal spraying and brazing technology. Since 2017, he is a lecturer at the University of Applied Sciences Iserlohn in the Department of Computer Sciences and Natural Sciences, Germany.

Dr.-Ing. Christian Klesen received his doctorate at the RWTH Aachen University, Germany in 2012 on “The Structure and Corrosion Behavior of Nanoparticle-Based Ceramic Coatings on Steel” and, in 2012, he started to work as an engineer in the field of metallography and failure analysis in the GSI Gesellschaft für Schweißtechnik Int. – SLV Duisburg, Germany. Since January 2016, he headed the materials and processes department there. Since September 2017, he is Head of technical sales and in addition is a lecturer in the Department of Computer Sciences and Natural Sciences of the University of Applied Sciences Iserlohn, Germany.


References

1 DIN EN ISO 2063: 2005-05: Thermisches Spritzen – Metallische und andere anorganische Schichten – Zink, Aluminium und ihre LegierungenSuche in Google Scholar

2 NORSOK Standard M-501, Rev. 6 February 2012: Surface preparation and protective coatingSuche in Google Scholar

3 G. R.Holcomb, B. S.Covino, S. D.Cramer, S. J.Bullard: Thermal-Spray Coatings for Coastal Infrastructure, Albany Research Center, U. S. Department of Energy (1997)Suche in Google Scholar

4 R.Stango, P.Khullar: Fundamentals of Bristle Blasting Process for removing corrosive layer, NACE Int. Corrosion Conference Proceedings (2009)Suche in Google Scholar

5 ANSI/AWS C2.18-93R: Guide for the Protection of Steel with Thermal Sprayed Coatings of Aluminium and Zinc and their Alloys and Composites (1993)Suche in Google Scholar

6 United States Navy, David Taylor Research Center: National Steel and Shipbuilding Company Procedure Handbook for Shipboard Thermal Sprayed Coating Applications, San Diego, California, USA (1992)Suche in Google Scholar

7 M.Büteführ: Einfluss des Aluminiumgehaltes gespritzter Zinküberzüge auf den Korrosionsschutz von Stahl, Dissertation, MPA Stuttgart, Schriftenreihe 91 (2006) ISBN 3-936846-62-6Suche in Google Scholar

8 H.Mathesius, W.Krömmer: Praxis des thermischen Spritzens – Anleitung für das Fachpersonal, DVS Media (2009) ISBN 978-3-87155-552-7Suche in Google Scholar

9 DVS 2302: 2011-09: Korrosionsschutz von Stählen und Gusseisenwerkstoffen durch thermisch gespritzte ÜberzügeSuche in Google Scholar

Published Online: 2018-07-03
Published in Print: 2018-02-02

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. SteBLife – A new short-time procedure for the calculation of S-N curves and failure probabilities
  5. Surface treatment for effective bonding in the sports industry
  6. Effect of different rotational speeds on mechanical and metallurgical properties of friction welded dissimilar steels
  7. Comparison of titanium and FGM dental implants with different coating types
  8. Weld quality and productivity of AISI 4140 steel welded by unpulsed and pulsed GMAW
  9. Corrosion behavior of Hastelloy® C–4® Ni–Cr–Mo–Fe alloys for coal gasification syngas plants
  10. Application of FactSage® thermodynamic modeling for predicting the ash transformation with temperatures under partial slagging entrained flow coal gasification condition
  11. Röntgen- und Neutronentomographie am knöchernen Innenohr der Bartenwale
  12. Partial repair of thermally sprayed and sealed corrosion protection – Organic coating material or thermal spraying?
  13. Experimental study on solidification of Cu(II)-contaminated soil using red mud with cement and Ca(OH)2
  14. Tribological study of sintered iron based and copper based brake materials by pin-on-disc method
  15. Influence of drilling parameters on temperature and surface roughness of AISI O2 steel
  16. Multi-fractal characteristics of particle size distribution of granular backfilling materials under different loads
  17. Dry sliding behavior of aluminum alloy 8011 with 4 % fly ash
  18. Optimization of the milling parameters for an Al/Si3N4 functionally graded composite using grey relational analysis
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111134/html
Button zum nach oben scrollen